

    
      
          
            
  
Amazon SageMaker Python SDK

Amazon SageMaker Python SDK is an open source library for training and deploying machine-learned models on Amazon SageMaker.

With the SDK, you can train and deploy models using popular deep learning frameworks, algorithms provided by Amazon, or your own algorithms built into SageMaker-compatible Docker images.

Here you’ll find API docs for SageMaker Python SDK. The project homepage is in Github: https://github.com/aws/sagemaker-python-sdk, where you can find the SDK source, installation instructions and a general overview of the library.


Overview

The SageMaker Python SDK consists of a few primary interfaces:



	Estimators

	HyperparameterTuner

	Model

	PipelineModel

	Predictors

	Transformer

	Session

	Analytics








MXNet

A managed environment for MXNet training and hosting on Amazon SageMaker



	MXNet
	MXNet Estimator

	MXNet Model

	MXNet Predictor












TensorFlow

A managed environment for TensorFlow training and hosting on Amazon SageMaker



	TensorFlow
	TensorFlow Estimator

	TensorFlow Model

	TensorFlow Predictor

	TensorFlow Serving Model

	TensorFlow Serving Predictor












Scikit-Learn

A managed enrionment for Scikit-learn training and hosting on Amazon SageMaker



	Scikit Learn
	Scikit Learn Estimator

	Scikit Learn Model

	Scikit Learn Predictor












PyTorch

A managed environment for PyTorch training and hosting on Amazon SageMaker



	PyTorch
	PyTorch Estimator

	PyTorch Model

	PyTorch Predictor












Chainer

A managed environment for Chainer training and hosting on Amazon SageMaker



	Chainer
	Chainer Estimator

	Chainer Model

	Chainer Predictor












Reinforcement Learning

A managed environment for Reinforcement Learning training and hosting on Amazon SageMaker



	RLEstimator
	RLEstimator Estimator












SparkML Serving

A managed environment for SparkML hosting on Amazon SageMaker



	SparkML Serving
	SparkML Model

	SparkML Predictor












SageMaker First-Party Algorithms

Amazon provides implementations of some common machine learning algortithms optimized for GPU architecture and massive datasets.



	Amazon Estimators

	FactorizationMachines

	IP Insights

	K-means

	K-Nearest Neighbors

	LDA

	LinearLearner

	NTM

	Object2Vec

	PCA

	Random Cut Forest








Workflows

SageMaker APIs to export configurations for creating and managing Airflow workflows.



	Airflow
	training_config

	tuning_config

	model_config

	model_config_from_estimator

	transform_config

	transform_config_from_estimator

	deploy_config

	deploy_config_from_estimator















          

      

      

    

  

    
      
          
            
  
Estimators

A high level interface for SageMaker training


	
class sagemaker.estimator.EstimatorBase(role, train_instance_count, train_instance_type, train_volume_size=30, train_volume_kms_key=None, train_max_run=86400, input_mode='File', output_path=None, output_kms_key=None, base_job_name=None, sagemaker_session=None, tags=None, subnets=None, security_group_ids=None, model_uri=None, model_channel_name='model', metric_definitions=None, encrypt_inter_container_traffic=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handle end-to-end Amazon SageMaker training and deployment tasks.

For introduction to model training and deployment, see
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html

Subclasses must define a way to determine what image to use for training,
what hyperparameters to use, and how to create an appropriate predictor instance.

Initialize an EstimatorBase instance.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	train_volume_size (int [https://docs.python.org/3/library/functions.html#int]) – Size in GB of the EBS volume to use for storing input data
during training (default: 30). Must be large enough to store training data if File Mode is used
(which is the default).


	train_volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting EBS volume attached to the
training instance (default: None).


	train_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for training (default: 24 * 60 * 60).
After this amount of time Amazon SageMaker terminates the job regardless of its current status.


	input_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The input mode that the algorithm supports (default: ‘File’). Valid modes:
‘File’ - Amazon SageMaker copies the training dataset from the S3 location to a local directory.
‘Pipe’ - Amazon SageMaker streams data directly from S3 to the container via a Unix-named pipe.
This argument can be overriden on a per-channel basis using sagemaker.session.s3_input.input_mode.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the trainig result (model artifacts and output files).
If not specified, results are stored to a default bucket. If the bucket with the specific name
does not exist, the estimator creates the bucket during the
fit() method execution.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the training output (default: None).


	base_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for training job name when the fit()
method launches. If not specified, the estimator generates a default job name, based on
the training image name and current timestamp.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a training job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	subnets (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of subnet ids. If not specified training job will be created without VPC config.


	security_group_ids (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of security group ids. If not specified training job will be created
without VPC config.


	model_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URI where a pre-trained model is stored, either locally or in S3 (default: None). If
specified, the estimator will create a channel pointing to the model so the training job can download
it. This model can be a ‘model.tar.gz’ from a previous training job, or other artifacts coming from a
different source.

In local mode, this should point to the path in which the model is located and not the file itself, as
local Docker containers will try to mount the URI as a volume.

More information: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html#td-deserialization




	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where ‘model_uri’ will be downloaded (default: ‘model’).


	metric_definitions (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries that defines the metric(s) used to evaluate the
training jobs. Each dictionary contains two keys: ‘Name’ for the name of the metric, and ‘Regex’ for
the regular expression used to extract the metric from the logs. This should be defined only
for jobs that don’t use an Amazon algorithm.


	encrypt_inter_container_traffic (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether traffic between training containers is encrypted
for the training job (default: False).









	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(inputs=None, wait=True, logs=True, job_name=None)

	Train a model using the input training dataset.

The API calls the Amazon SageMaker CreateTrainingJob API to start model training.
The API uses configuration you provided to create the estimator and the
specified input training data to send the CreatingTrainingJob request to Amazon SageMaker.

This is a synchronous operation. After the model training successfully completes,
you can call the deploy() method to host the model using the Amazon SageMaker hosting services.


	Parameters

	
	inputs (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or sagemaker.session.s3_input) – Information about the training data.
This can be one of three types:


	(str) the S3 location where training data is saved.


	
	(dict[str, str] or dict[str, sagemaker.session.s3_input]) If using multiple channels for

	training data, you can specify a dict mapping channel names
to strings or s3_input() objects.







	
	(sagemaker.session.s3_input) - channel configuration for S3 data sources that can provide

	additional information as well as the path to the training dataset.
See sagemaker.session.s3_input() for full details.












	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
create_model(**kwargs)

	Create a SageMaker Model object that can be deployed to an Endpoint.


	Parameters

	**kwargs – Keyword arguments used by the implemented method for creating the Model.



	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.










	
class sagemaker.estimator.Estimator(image_name, role, train_instance_count, train_instance_type, train_volume_size=30, train_volume_kms_key=None, train_max_run=86400, input_mode='File', output_path=None, output_kms_key=None, base_job_name=None, sagemaker_session=None, hyperparameters=None, tags=None, subnets=None, security_group_ids=None, model_uri=None, model_channel_name='model', metric_definitions=None, encrypt_inter_container_traffic=False)

	Bases: sagemaker.estimator.EstimatorBase

A generic Estimator to train using any supplied algorithm. This class is designed for use with
algorithms that don’t have their own, custom class.

Initialize an Estimator instance.


	Parameters

	
	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The container image to use for training.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	train_volume_size (int [https://docs.python.org/3/library/functions.html#int]) – Size in GB of the EBS volume to use for storing input data
during training (default: 30). Must be large enough to store training data if File Mode is used
(which is the default).


	train_volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting EBS volume attached to the
training instance (default: None).


	train_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for training (default: 24 * 60 * 60).
After this amount of time Amazon SageMaker terminates the job regardless of its current status.


	input_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The input mode that the algorithm supports (default: ‘File’). Valid modes:


	’File’ - Amazon SageMaker copies the training dataset from the S3 location to a local directory.


	’Pipe’ - Amazon SageMaker streams data directly from S3 to the container via a Unix-named pipe.




This argument can be overriden on a per-channel basis using sagemaker.session.s3_input.input_mode.




	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the trainig result (model artifacts and output files).
If not specified, results are stored to a default bucket. If the bucket with the specific name
does not exist, the estimator creates the bucket during the
fit() method execution.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the training output (default: None).


	base_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for training job name when the fit()
method launches. If not specified, the estimator generates a default job name, based on
the training image name and current timestamp.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing the hyperparameters to initialize this estimator with.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a training job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	subnets (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of subnet ids. If not specified training job will be created without VPC config.


	security_group_ids (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of security group ids. If not specified training job will be created
without VPC config.


	model_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URI where a pre-trained model is stored, either locally or in S3 (default: None). If
specified, the estimator will create a channel pointing to the model so the training job can download
it. This model can be a ‘model.tar.gz’ from a previous training job, or other artifacts coming from a
different source.

In local mode, this should point to the path in which the model is located and not the file itself,
as local Docker containers will try to mount the URI as a volume.

More information: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html#td-deserialization




	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where ‘model_uri’ will be downloaded (default: ‘model’).


	metric_definitions (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries that defines the metric(s) used to evaluate the
training jobs. Each dictionary contains two keys: ‘Name’ for the name of the metric, and ‘Regex’ for
the regular expression used to extract the metric from the logs. This should be defined only
for jobs that don’t use an Amazon algorithm.


	encrypt_inter_container_traffic (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether traffic between training containers is encrypted
for the training job (default: False).









	
train_image()

	Returns the docker image to use for training.

The fit() method, that does the model training, calls this method to find the image to use for model training.






	
set_hyperparameters(**kwargs)

	




	
hyperparameters()

	Returns the hyperparameters as a dictionary to use for training.

The fit() method, that does the model training, calls this method to find the hyperparameters you specified.






	
create_model(role=None, image=None, predictor_cls=None, serializer=None, deserializer=None, content_type=None, accept=None, vpc_config_override='VPC_CONFIG_DEFAULT', **kwargs)

	Create a model to deploy.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – An container image to use for deploying the model. Defaults to the image used for training.


	predictor_cls (RealTimePredictor) – The predictor class to use when deploying the model.


	serializer (callable) – Should accept a single argument, the input data, and return a sequence
of bytes. May provide a content_type attribute that defines the endpoint request content type


	deserializer (callable) – Should accept two arguments, the result data and the response content type,
and return a sequence of bytes. May provide a content_type attribute that defines th endpoint
response Accept content type.


	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The invocation ContentType, overriding any content_type from the serializer


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The invocation Accept, overriding any accept from the deserializer.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	serializer, deserializer, content_type, and accept arguments are only used to define a default (The) – 


	They are ignored if an explicit predictor class is passed in. Other arguments (RealTimePredictor.) – 


	passed through to the Model class. (are) – 








Returns: a Model ready for deployment.






	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(inputs=None, wait=True, logs=True, job_name=None)

	Train a model using the input training dataset.

The API calls the Amazon SageMaker CreateTrainingJob API to start model training.
The API uses configuration you provided to create the estimator and the
specified input training data to send the CreatingTrainingJob request to Amazon SageMaker.

This is a synchronous operation. After the model training successfully completes,
you can call the deploy() method to host the model using the Amazon SageMaker hosting services.


	Parameters

	
	inputs (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or sagemaker.session.s3_input) – Information about the training data.
This can be one of three types:


	(str) the S3 location where training data is saved.


	
	(dict[str, str] or dict[str, sagemaker.session.s3_input]) If using multiple channels for

	training data, you can specify a dict mapping channel names
to strings or s3_input() objects.







	
	(sagemaker.session.s3_input) - channel configuration for S3 data sources that can provide

	additional information as well as the path to the training dataset.
See sagemaker.session.s3_input() for full details.












	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).

















	
class sagemaker.estimator.Framework(entry_point, source_dir=None, hyperparameters=None, enable_cloudwatch_metrics=False, container_log_level=20, code_location=None, image_name=None, dependencies=None, **kwargs)

	Bases: sagemaker.estimator.EstimatorBase

Base class that cannot be instantiated directly.

Subclasses define functionality pertaining to specific ML frameworks,
such as training/deployment images and predictor instances.

Base class initializer. Subclasses which override __init__ should invoke super()


	Parameters

	
	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the local Python source file which should be executed
as the entry point to training. This should be compatible with either Python 2.7 or Python 3.5.


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from the entry point file (default: None). Structure within this
directory are preserved when training on Amazon SageMaker.


	dependencies (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of paths to directories (absolute or relative) with
any additional libraries that will be exported to the container (default: []).
The library folders will be copied to SageMaker in the same folder where the entrypoint is copied.
.. rubric:: Example

The following call
>>> Estimator(entry_point=’train.py’, dependencies=[‘my/libs/common’, ‘virtual-env’])
results in the following inside the container:

>>> $ ls





>>> opt/ml/code
>>>     |------ train.py
>>>     |------ common
>>>     |------ virtual-env








	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters that will be used for training (default: None).
The hyperparameters are made accessible as a dict[str, str] to the training code on SageMaker.
For convenience, this accepts other types for keys and values, but str() will be called
to convert them before training.


	enable_cloudwatch_metrics (bool [https://docs.python.org/3/library/functions.html#bool]) – [DEPRECATED] Now there are cloudwatch metrics emitted by all SageMaker
training jobs. This will be ignored for now and removed in a further release.


	container_log_level (int [https://docs.python.org/3/library/functions.html#int]) – Log level to use within the container (default: logging.INFO).
Valid values are defined in the Python logging module.


	code_location (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 prefix URI where custom code will be uploaded (default: None).
The code file uploaded in S3 is ‘code_location/source/sourcedir.tar.gz’.
If not specified, the default code location is s3://default_bucket/job-name/. And code file
uploaded to S3 is s3://default_bucket/job-name/source/sourcedir.tar.gz


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – An alternate image name to use instead of the official Sagemaker image
for the framework. This is useful to run one of the Sagemaker supported frameworks
with an image containing custom dependencies.


	**kwargs – Additional kwargs passed to the EstimatorBase constructor.









	
LAUNCH_PS_ENV_NAME = 'sagemaker_parameter_server_enabled'

	




	
LAUNCH_MPI_ENV_NAME = 'sagemaker_mpi_enabled'

	




	
MPI_NUM_PROCESSES_PER_HOST = 'sagemaker_mpi_num_of_processes_per_host'

	




	
MPI_CUSTOM_MPI_OPTIONS = 'sagemaker_mpi_custom_mpi_options'

	




	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method
to find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training,
calls this method to find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, model_server_workers=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
create_model(**kwargs)

	Create a SageMaker Model object that can be deployed to an Endpoint.


	Parameters

	**kwargs – Keyword arguments used by the implemented method for creating the Model.



	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(inputs=None, wait=True, logs=True, job_name=None)

	Train a model using the input training dataset.

The API calls the Amazon SageMaker CreateTrainingJob API to start model training.
The API uses configuration you provided to create the estimator and the
specified input training data to send the CreatingTrainingJob request to Amazon SageMaker.

This is a synchronous operation. After the model training successfully completes,
you can call the deploy() method to host the model using the Amazon SageMaker hosting services.


	Parameters

	
	inputs (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or sagemaker.session.s3_input) – Information about the training data.
This can be one of three types:


	(str) the S3 location where training data is saved.


	
	(dict[str, str] or dict[str, sagemaker.session.s3_input]) If using multiple channels for

	training data, you can specify a dict mapping channel names
to strings or s3_input() objects.







	
	(sagemaker.session.s3_input) - channel configuration for S3 data sources that can provide

	additional information as well as the path to the training dataset.
See sagemaker.session.s3_input() for full details.












	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.













          

      

      

    

  

    
      
          
            
  
HyperparameterTuner


	
class sagemaker.tuner.HyperparameterTuner(estimator, objective_metric_name, hyperparameter_ranges, metric_definitions=None, strategy='Bayesian', objective_type='Maximize', max_jobs=1, max_parallel_jobs=1, tags=None, base_tuning_job_name=None, warm_start_config=None, early_stopping_type='Off')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for creating and interacting with Amazon SageMaker hyperparameter tuning jobs, as well as
deploying the resulting model(s).

Initialize a HyperparameterTuner. It takes an estimator to obtain configuration information
for training jobs that are created as the result of a hyperparameter tuning job.


	Parameters

	
	estimator (sagemaker.estimator.EstimatorBase) – An estimator object that has been initialized with
the desired configuration. There does not need to be a training job associated with this instance.


	objective_metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the metric for evaluating training jobs.


	hyperparameter_ranges (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.parameter.ParameterRange]) – Dictionary of parameter ranges.
These parameter ranges can be one of three types: Continuous, Integer, or Categorical. The keys of the
dictionary are the names of the hyperparameter, and the values are the appropriate parameter range class
to represent the range.


	metric_definitions (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries that defines the metric(s) used to evaluate the
training jobs (default: None). Each dictionary contains two keys: ‘Name’ for the name of the metric, and
‘Regex’ for the regular expression used to extract the metric from the logs. This should be defined only
for hyperparameter tuning jobs that don’t use an Amazon algorithm.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Strategy to be used for hyperparameter estimations (default: ‘Bayesian’).


	objective_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the objective metric for evaluating training jobs. This value can be
either ‘Minimize’ or ‘Maximize’ (default: ‘Maximize’).


	max_jobs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total number of training jobs to start for the hyperparameter tuning job
(default: 1).


	max_parallel_jobs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of parallel training jobs to start (default: 1).


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling the tuning job (default: None). For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	base_tuning_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for the hyperparameter tuning job name when the
fit() method launches. If not specified,
a default job name is generated, based on the training image name and current timestamp.


	warm_start_config (sagemaker.tuner.WarmStartConfig) – A WarmStartConfig object that has been initialized
with the configuration defining the nature of warm start tuning job.


	early_stopping_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies whether early stopping is enabled for the job.
Can be either ‘Auto’ or ‘Off’ (default: ‘Off’). If set to ‘Off’, early stopping will not be attempted.
If set to ‘Auto’, early stopping of some training jobs may happen, but is not guaranteed to.









	
TUNING_JOB_NAME_MAX_LENGTH = 32

	




	
SAGEMAKER_ESTIMATOR_MODULE = 'sagemaker_estimator_module'

	




	
SAGEMAKER_ESTIMATOR_CLASS_NAME = 'sagemaker_estimator_class_name'

	




	
DEFAULT_ESTIMATOR_MODULE = 'sagemaker.estimator'

	




	
DEFAULT_ESTIMATOR_CLS_NAME = 'Estimator'

	




	
fit(inputs=None, job_name=None, include_cls_metadata=False, **kwargs)

	Start a hyperparameter tuning job.


	Parameters

	
	inputs – Information about the training data. Please refer to the fit() method of
the associated estimator, as this can take any of the following forms:


	(str) - The S3 location where training data is saved.


	
	(dict[str, str] or dict[str, sagemaker.session.s3_input]) - If using multiple channels for

	training data, you can specify a dict mapping channel names
to strings or s3_input() objects.







	
	(sagemaker.session.s3_input) - Channel configuration for S3 data sources that can provide

	additional information about the training dataset. See sagemaker.session.s3_input()
for full details.







	
	(sagemaker.amazon.amazon_estimator.RecordSet) - A collection of

	Amazon :class:~`Record` objects serialized and stored in S3.
For use with an estimator for an Amazon algorithm.







	
	(list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of

	:class:~`sagemaker.amazon.amazon_estimator.RecordSet` objects, where each instance is
a different channel of training data.












	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Tuning job name. If not specified, the tuner generates a default job name,
based on the training image name and current timestamp.


	include_cls_metadata (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the hyperparameter tuning job should include
information about the estimator class (default: False). This information is passed
as a hyperparameter, so if the algorithm you are using cannot handle
unknown hyperparameters (e.g. an Amazon SageMaker built-in algorithm that
does not have a custom estimator in the Python SDK), then set
include_cls_metadata to False.


	**kwargs – Other arguments needed for training. Please refer to the fit() method of the associated
estimator to see what other arguments are needed.













	
classmethod attach(tuning_job_name, sagemaker_session=None, job_details=None, estimator_cls=None)

	Attach to an existing hyperparameter tuning job.

Create a HyperparameterTuner bound to an existing hyperparameter tuning job. After attaching, if there exists a
best training job (or any other completed training job), that can be deploy()``ed to create
an Amazon SageMaker Endpoint and return a ``Predictor.


	Parameters

	
	tuning_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the hyperparameter tuning job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created
using the default AWS configuration chain.


	job_details (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The response to a DescribeHyperParameterTuningJob call. If not specified,
the HyperparameterTuner will perform one such call with the provided hyperparameter tuning job name.


	estimator_cls (str [https://docs.python.org/3/library/stdtypes.html#str]) – The estimator class name associated with the training jobs,
e.g. ‘sagemaker.estimator.Estimator’. If not specified, the HyperparameterTuner will try to derive
the correct estimator class from training job metadata, defaulting to
:class:~`sagemaker.estimator.Estimator` if it is unable to determine a more specific class.








Examples

>>> my_tuner.fit()
>>> job_name = my_tuner.latest_tuning_job.name
Later on:
>>> attached_tuner = HyperparameterTuner.attach(job_name)
>>> attached_tuner.deploy()






	Returns

	
	A HyperparameterTuner instance with the attached hyperparameter

	tuning job.









	Return type

	sagemaker.tuner.HyperparameterTuner










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, **kwargs)

	Deploy the best trained or user specified model to an Amazon SageMaker endpoint and return a
sagemaker.RealTimePredictor object.

For more information: http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified,
the name of the training job is used.


	**kwargs – Other arguments needed for deployment. Please refer to the create_model() method of
the associated estimator to see what other arguments are needed.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
stop_tuning_job()

	Stop latest running hyperparameter tuning job.






	
wait()

	Wait for latest hyperparameter tuning job to finish.






	
best_training_job()

	Return name of the best training job for the latest hyperparameter tuning job.


	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If there is no best training job available for the hyperparameter tuning job.










	
delete_endpoint(endpoint_name=None)

	Delete an Amazon SageMaker endpoint.

If an endpoint name is not specified, this defaults to looking for an endpoint that
shares a name with the best training job for deletion.


	Parameters

	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the endpoint to delete










	
hyperparameter_ranges()

	Return the hyperparameter ranges in a dictionary to be used as part of a request for creating a
hyperparameter tuning job.






	
sagemaker_session

	~`sagemaker.session.Session` object associated
with the estimator for the HyperparameterTuner.


	Type

	Convenience method for accessing the



	Type

	class










	
analytics()

	An instance of HyperparameterTuningJobAnalytics for this latest tuning job of this tuner.
Analytics olbject gives you access to tuning results summarized into a pandas dataframe.






	
transfer_learning_tuner(additional_parents=None, estimator=None)

	Creates a new HyperparameterTuner by copying the request fields from the provided parent to the new
instance of HyperparameterTuner. Followed by addition of warm start configuration with the type as
“TransferLearning” and parents as the union of provided list of additional_parents and the self.
Also, training image in the new tuner’s estimator is updated with the provided training_image.


	Parameters

	
	additional_parents (set{str}) – Set of additional parents along with the self to be used in warm starting


	transfer learning tuner. (the) – 


	estimator (sagemaker.estimator.EstimatorBase) – An estimator object that has been initialized with
the desired configuration. There does not need to be a training job associated with this instance.






	Returns

	HyperparameterTuner instance which can be used to launch transfer
learning tuning job.



	Return type

	sagemaker.tuner.HyperparameterTuner





Examples

>>> parent_tuner = HyperparameterTuner.attach(tuning_job_name="parent-job-1")
>>> transfer_learning_tuner = parent_tuner.transfer_learning_tuner(additional_parents={"parent-job-2"})
Later On:
>>> transfer_learning_tuner.fit(inputs={})










	
identical_dataset_and_algorithm_tuner(additional_parents=None)

	Creates a new HyperparameterTuner by copying the request fields from the provided parent to the new
instance of HyperparameterTuner. Followed by addition of warm start configuration with the type as
“IdenticalDataAndAlgorithm” and parents as the union of provided list of additional_parents and the self


	Parameters

	
	additional_parents (set{str}) – Set of additional parents along with the self to be used in warm starting


	identical dataset and algorithm tuner. (the) – 






	Returns

	HyperparameterTuner instance which can be used to launch identical
dataset and algorithm tuning job.



	Return type

	sagemaker.tuner.HyperparameterTuner





Examples

>>> parent_tuner = HyperparameterTuner.attach(tuning_job_name="parent-job-1")
>>> identical_dataset_algo_tuner = parent_tuner.identical_dataset_and_algorithm_tuner(
>>>                                                             additional_parents={"parent-job-2"})
Later On:
>>> identical_dataset_algo_tuner.fit(inputs={})














	
class sagemaker.tuner.ContinuousParameter(min_value, max_value)

	Bases: sagemaker.parameter.ParameterRange

A class for representing hyperparameters that have a continuous range of possible values.
:param min_value: The minimum value for the range.
:type min_value: float
:param max_value: The maximum value for the range.
:type max_value: float

Initialize a parameter range.


	Parameters

	
	min_value (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The minimum value for the range.


	max_value (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The maximum value for the range.









	
classmethod cast_to_type(value)

	








	
class sagemaker.tuner.IntegerParameter(min_value, max_value)

	Bases: sagemaker.parameter.ParameterRange

A class for representing hyperparameters that have an integer range of possible values.
:param min_value: The minimum value for the range.
:type min_value: int
:param max_value: The maximum value for the range.
:type max_value: int

Initialize a parameter range.


	Parameters

	
	min_value (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The minimum value for the range.


	max_value (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The maximum value for the range.









	
classmethod cast_to_type(value)

	








	
class sagemaker.tuner.CategoricalParameter(values)

	Bases: sagemaker.parameter.ParameterRange

A class for representing hyperparameters that have a discrete list of possible values.

Initialize a CategoricalParameter.


	Parameters

	values (list [https://docs.python.org/3/library/stdtypes.html#list] or object [https://docs.python.org/3/library/functions.html#object]) – The possible values for the hyperparameter. This input will
be converted into a list of strings.






	
as_tuning_range(name)

	Represent the parameter range as a dicionary suitable for a request to
create an Amazon SageMaker hyperparameter tuning job.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the hyperparameter.



	Returns

	A dictionary that contains the name and values of the hyperparameter.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]










	
as_json_range(name)

	Represent the parameter range as a dictionary suitable for a request to
create an Amazon SageMaker hyperparameter tuning job using one of the deep learning frameworks.

The deep learning framework images require that hyperparameters be serialized as JSON.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the hyperparameter.



	Returns

	
	A dictionary that contains the name and values of the hyperparameter,

	where the values are serialized as JSON.









	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]










	
is_valid(value)

	Determine if a value is valid within this ParameterRange.


	Parameters

	value (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The value to be verified.



	Returns

	True if valid, False otherwise.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
classmethod cast_to_type(value)

	











          

      

      

    

  

    
      
          
            
  
Model


	
class sagemaker.model.Model(model_data, image, role=None, predictor_cls=None, env=None, name=None, vpc_config=None, sagemaker_session=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A SageMaker Model that can be deployed to an Endpoint.

Initialize an SageMaker Model.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role if it needs to access some AWS
resources. It can be null if this is being used to create a Model to pass to a PipelineModel which
has its own Role field. (default: None)


	predictor_cls (callable[string, sagemaker.session.Session]) – A function to call to create
a predictor (default: None). If not None, deploy will return the result of invoking
this function on the created endpoint name.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Environment variables to run with image when hosted in SageMaker (default: None).


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The model name. If None, a default model name will be selected on each deploy.


	vpc_config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The VpcConfig set on the model (default: None)
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	sagemaker_session (sagemaker.session.Session) – A SageMaker Session object, used for SageMaker
interactions (default: None). If not specified, one is created using the default AWS configuration chain.









	
prepare_container_def(instance_type, accelerator_type=None)

	Return a dict created by sagemaker.container_def() for deploying this model to a specified instance type.

Subclasses can override this to provide custom container definitions for
deployment to a specific instance type. Called by deploy().


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
enable_network_isolation()

	Whether to enable network isolation when creating this Model


	Returns

	If network isolation should be enabled or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
compile(target_instance_family, input_shape, output_path, role, tags=None, job_name=None, compile_max_run=300, framework=None, framework_version=None)

	Compile this Model with SageMaker Neo.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – Execution role


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the compilation job


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – 






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, tags=None)

	Deploy this Model to an Endpoint and optionally return a Predictor.

Create a SageMaker Model and EndpointConfig, and deploy an Endpoint from this Model.
If self.predictor_cls is not None, this method returns a the result of invoking
self.predictor_cls on the created endpoint name.

The name of the created model is accessible in the name field of this Model after deploy returns

The name of the created endpoint is accessible in the endpoint_name
field of this Model after deploy returns.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – The initial number of instances to run in the
Endpoint created from this Model.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to deploy this model for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to create (default: None).
If not specified, a unique endpoint name will be created.


	tags (List[dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The list of tags to attach to this specific endpoint.






	Returns

	
	Invocation of self.predictor_cls on

	the created endpoint name, if self.predictor_cls is not None. Otherwise, return None.









	Return type

	callable[string, sagemaker.session.Session] or None [https://docs.python.org/3/library/constants.html#None]










	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, volume_kms_key=None)

	Return a Transformer that uses this Model.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Model will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).




















          

      

      

    

  

    
      
          
            
  
PipelineModel


	
class sagemaker.pipeline.PipelineModel(models, role, predictor_cls=None, name=None, vpc_config=None, sagemaker_session=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A pipeline of SageMaker Model``s that can be deployed to an ``Endpoint.

Initialize an SageMaker Model which can be used to build an Inference Pipeline comprising of multiple
model containers.


	Parameters

	
	models (list [https://docs.python.org/3/library/stdtypes.html#list][sagemaker.Model]) – For using multiple containers to build an inference pipeline,


	can pass a list of sagemaker.Model objects in the order you want the inference to happen. (you) – 


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	predictor_cls (callable[string, sagemaker.session.Session]) – A function to call to create
a predictor (default: None). If not None, deploy will return the result of invoking
this function on the created endpoint name.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The model name. If None, a default model name will be selected on each deploy.


	vpc_config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The VpcConfig set on the model (default: None)
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	sagemaker_session (sagemaker.session.Session) – A SageMaker Session object, used for SageMaker
interactions (default: None). If not specified, one is created using the default AWS configuration chain.









	
pipeline_container_def(instance_type)

	
	Return a dict created by sagemaker.pipeline_container_def() for deploying this model to a specified

	instance type.





Subclasses can override this to provide custom container definitions for
deployment to a specific instance type. Called by deploy().


	Parameters

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.



	Returns

	A list of container definition objects usable with the CreateModel API in the scenario
of multiple containers (Inference Pipeline).



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]










	
deploy(initial_instance_count, instance_type, endpoint_name=None, tags=None)

	Deploy this Model to an Endpoint and optionally return a Predictor.

Create a SageMaker Model and EndpointConfig, and deploy an Endpoint from this Model.
If self.predictor_cls is not None, this method returns a the result of invoking
self.predictor_cls on the created endpoint name.

The name of the created model is accessible in the name field of this Model after deploy returns

The name of the created endpoint is accessible in the endpoint_name
field of this Model after deploy returns.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – The initial number of instances to run in the
Endpoint created from this Model.


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to create (default: None).
If not specified, a unique endpoint name will be created.


	tags (List[dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The list of tags to attach to this specific endpoint.






	Returns

	
	Invocation of self.predictor_cls on

	the created endpoint name, if self.predictor_cls is not None. Otherwise, return None.









	Return type

	callable[string, sagemaker.session.Session] or None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  
Predictors

Make real-time predictions against SageMaker endpoints with Python objects


	
class sagemaker.predictor.RealTimePredictor(endpoint, sagemaker_session=None, serializer=None, deserializer=None, content_type=None, accept=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Make prediction requests to an Amazon SageMaker endpoint.

Initialize a RealTimePredictor.

Behavior for serialization of input data and deserialization of result data
can be configured through initializer arguments. If not specified, a sequence
of bytes is expected and the API sends it in the request body without modifications.
In response, the API returns the sequence of bytes from the prediction result without any modifications.


	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker endpoint to which requests are sent.


	sagemaker_session (sagemaker.session.Session) – A SageMaker Session object, used for SageMaker
interactions (default: None). If not specified, one is created using the default AWS configuration chain.


	serializer (callable) – Accepts a single argument, the input data, and returns a sequence
of bytes. It may provide a content_type attribute that defines the endpoint request content type.
If not specified, a sequence of bytes is expected for the data.


	deserializer (callable) – Accepts two arguments, the result data and the response content type,
and returns a sequence of bytes. It may provide a content_type attribute that defines the endpoint
response’s “Accept” content type. If not specified, a sequence of bytes is expected for the data.


	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The invocation’s “ContentType”, overriding any content_type from
the serializer (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The invocation’s “Accept”, overriding any accept from the deserializer (default: None).









	
predict(data, initial_args=None)

	Return the inference from the specified endpoint.


	Parameters

	
	data (object [https://docs.python.org/3/library/functions.html#object]) – Input data for which you want the model to provide inference.
If a serializer was specified when creating the RealTimePredictor, the result of the
serializer is sent as input data. Otherwise the data must be sequence of bytes, and
the predict method then sends the bytes in the request body as is.


	initial_args (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional. Default arguments for boto3
invoke_endpoint call. Default is None (no default arguments).






	Returns

	
	Inference for the given input. If a deserializer was specified when creating

	the RealTimePredictor, the result of the deserializer is returned. Otherwise the response
returns the sequence of bytes as is.









	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
delete_endpoint()

	Delete the Amazon SageMaker endpoint backing this predictor.













          

      

      

    

  

    
      
          
            
  
Transformer


	
class sagemaker.transformer.Transformer(model_name, instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, max_concurrent_transforms=None, max_payload=None, tags=None, env=None, base_transform_job_name=None, sagemaker_session=None, volume_kms_key=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for handling creating and interacting with Amazon SageMaker transform jobs.

Initialize a Transformer.


	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the SageMaker model being used for the transform job.


	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MultiRecord’ and ‘SingleRecord’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job (default: None). For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	base_transform_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix for the transform job when the
transform() method launches. If not specified, a default prefix
will be generated based on the training image name that was used to train the model associated with
the transform job.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).









	
transform(data, data_type='S3Prefix', content_type=None, compression_type=None, split_type=None, job_name=None)

	Start a new transform job.


	Parameters

	
	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input data location in S3.


	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – What the S3 location defines (default: ‘S3Prefix’). Valid values:


	
	’S3Prefix’ - the S3 URI defines a key name prefix. All objects with this prefix will be used as

	inputs for the transform job.







	
	’ManifestFile’ - the S3 URI points to a single manifest file listing each S3 object to use as

	an input for the transform job.












	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – MIME type of the input data (default: None).


	compression_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Compression type of the input data, if compressed (default: None).
Valid values: ‘Gzip’, None.


	split_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record delimiter for the input object (default: ‘None’).
Valid values: ‘None’, ‘Line’, ‘RecordIO’, and ‘TFRecord’.


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – job name (default: None). If not specified, one will be generated.













	
wait()

	




	
classmethod attach(transform_job_name, sagemaker_session=None)

	Attach an existing transform job to a new Transformer instance


	Parameters

	
	transform_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name for the transform job to be attached.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, one will be created
using the default AWS configuration chain.






	Returns

	The Transformer instance with the specified transform job attached.



	Return type

	sagemaker.transformer.Transformer

















          

      

      

    

  

    
      
          
            
  
Session


	
class sagemaker.session.LogState

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
STARTING = 1

	




	
WAIT_IN_PROGRESS = 2

	




	
TAILING = 3

	




	
JOB_COMPLETE = 4

	




	
COMPLETE = 5

	








	
class sagemaker.session.Session(boto_session=None, sagemaker_client=None, sagemaker_runtime_client=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manage interactions with the Amazon SageMaker APIs and any other AWS services needed.

This class provides convenient methods for manipulating entities and resources that Amazon SageMaker uses,
such as training jobs, endpoints, and input datasets in S3.

AWS service calls are delegated to an underlying Boto3 session, which by default
is initialized using the AWS configuration chain. When you make an Amazon SageMaker API call that
accesses an S3 bucket location and one is not specified, the Session creates a default bucket based on
a naming convention which includes the current AWS account ID.

Initialize a SageMaker Session.


	Parameters

	
	boto_session (boto3.session.Session) – The underlying Boto3 session which AWS service calls
are delegated to (default: None). If not provided, one is created with default AWS configuration chain.


	sagemaker_client (boto3.SageMaker.Client) – Client which makes Amazon SageMaker service calls other
than InvokeEndpoint (default: None). Estimators created using this Session use this client.
If not provided, one will be created using this instance’s boto_session.


	sagemaker_runtime_client (boto3.SageMakerRuntime.Client) – Client which makes InvokeEndpoint
calls to Amazon SageMaker (default: None). Predictors created using this Session use this client.
If not provided, one will be created using this instance’s boto_session.









	
boto_region_name

	




	
upload_data(path, bucket=None, key_prefix='data')

	Upload local file or directory to S3.

If a single file is specified for upload, the resulting S3 object key is {key_prefix}/{filename}
(filename does not include the local path, if any specified).

If a directory is specified for upload, the API uploads all content, recursively,
preserving relative structure of subdirectories. The resulting object key names are:
{key_prefix}/{relative_subdirectory_path}/filename.


	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) of local file or directory to upload.


	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the S3 Bucket to upload to (default: None). If not specified, the
default bucket of the Session is used (if default bucket does not exist, the Session
creates it).


	key_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional S3 object key name prefix (default: ‘data’). S3 uses the prefix to
create a directory structure for the bucket content that it display in the S3 console.






	Returns

	
	The S3 URI of the uploaded file(s). If a file is specified in the path argument, the URI format is:

	s3://{bucket name}/{key_prefix}/{original_file_name}.
If a directory is specified in the path argument, the URI format is s3://{bucket name}/{key_prefix}.









	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
default_bucket()

	Return the name of the default bucket to use in relevant Amazon SageMaker interactions.


	Returns

	The name of the default bucket, which is of the form: sagemaker-{region}-{AWS account ID}.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
train(input_mode, input_config, role, job_name, output_config, resource_config, vpc_config, hyperparameters, stop_condition, tags, metric_definitions, enable_network_isolation=False, image=None, algorithm_arn=None, encrypt_inter_container_traffic=False)

	Create an Amazon SageMaker training job.


	Parameters

	
	input_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The input mode that the algorithm supports. Valid modes:


	
	’File’ - Amazon SageMaker copies the training dataset from the S3 location to

	a directory in the Docker container.







	’Pipe’ - Amazon SageMaker streams data directly from S3 to the container via a Unix-named pipe.







	input_config (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of Channel objects. Each channel is a named input source. Please refer to
the format details described:
https://botocore.readthedocs.io/en/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
You must grant sufficient permissions to this role.


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the training job being created.


	output_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The S3 URI where you want to store the training results and optional KMS key ID.


	resource_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Contains values for ResourceConfig:


	
	instance_count (int): Number of EC2 instances to use for training.

	The key in resource_config is ‘InstanceCount’.







	
	instance_type (str): Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.

	The key in resource_config is ‘InstanceType’.












	vpc_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Contains values for VpcConfig:


	
	subnets (list[str]): List of subnet ids.

	The key in vpc_config is ‘Subnets’.







	
	security_group_ids (list[str]): List of security group ids.

	The key in vpc_config is ‘SecurityGroupIds’.












	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters for model training. The hyperparameters are made accessible as
a dict[str, str] to the training code on SageMaker. For convenience, this accepts other types for
keys and values, but str() will be called to convert them before training.


	stop_condition (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Defines when training shall finish. Contains entries that can be understood by the
service like MaxRuntimeInSeconds.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a training job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	metric_definitions (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries that defines the metric(s) used to evaluate the
training jobs. Each dictionary contains two keys: ‘Name’ for the name of the metric, and ‘Regex’ for
the regular expression used to extract the metric from the logs.


	enable_network_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to request for the training job to run with
network isolation or not.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Docker image containing training code.


	algorithm_arn (str [https://docs.python.org/3/library/stdtypes.html#str]) – Algorithm Arn from Marketplace.


	encrypt_inter_container_traffic (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether traffic between training containers is
encrypted for the training job (default: False).






	Returns

	ARN of the training job, if it is created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
compile_model(input_model_config, output_model_config, role, job_name, stop_condition, tags)

	Create an Amazon SageMaker Neo compilation job.


	Parameters

	
	input_model_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the trained model and the Amazon S3 location where it is stored.


	output_model_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – 
	Identifies the Amazon S3 location where you want Amazon SageMaker Neo to save




the results of compilation job




	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker Neo compilation jobs use this
role to access model artifacts. You must grant sufficient permissions to this role.


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the compilation job being created.


	stop_condition (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Defines when compilation job shall finish. Contains entries that can be understood
by the service like MaxRuntimeInSeconds.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compile model job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.






	Returns

	ARN of the compile model job, if it is created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
tune(job_name, strategy, objective_type, objective_metric_name, max_jobs, max_parallel_jobs, parameter_ranges, static_hyperparameters, input_mode, metric_definitions, role, input_config, output_config, resource_config, stop_condition, tags, warm_start_config, enable_network_isolation=False, image=None, algorithm_arn=None, early_stopping_type='Off', encrypt_inter_container_traffic=False, vpc_config=None)

	Create an Amazon SageMaker hyperparameter tuning job


	Parameters

	
	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the tuning job being created.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – Strategy to be used for hyperparameter estimations.


	objective_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the objective metric for evaluating training jobs. This value can be
either ‘Minimize’ or ‘Maximize’.


	objective_metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the metric for evaluating training jobs.


	max_jobs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum total number of training jobs to start for the hyperparameter tuning job.


	max_parallel_jobs (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of parallel training jobs to start.


	parameter_ranges (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of parameter ranges. These parameter ranges can be one of three types:
Continuous, Integer, or Categorical.


	static_hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters for model training. These hyperparameters remain
unchanged across all of the training jobs for the hyperparameter tuning job. The hyperparameters are
made accessible as a dictionary for the training code on SageMaker.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Docker image containing training code.


	input_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The input mode that the algorithm supports. Valid modes:


	
	’File’ - Amazon SageMaker copies the training dataset from the S3 location to

	a directory in the Docker container.







	’Pipe’ - Amazon SageMaker streams data directly from S3 to the container via a Unix-named pipe.







	metric_definitions (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries that defines the metric(s) used to evaluate the
training jobs. Each dictionary contains two keys: ‘Name’ for the name of the metric, and ‘Regex’ for
the regular expression used to extract the metric from the logs. This should be defined only for
jobs that don’t use an Amazon algorithm.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
You must grant sufficient permissions to this role.


	input_config (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of Channel objects. Each channel is a named input source. Please refer to
the format details described:
https://botocore.readthedocs.io/en/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job


	output_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The S3 URI where you want to store the training results and optional KMS key ID.


	resource_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Contains values for ResourceConfig:


	
	instance_count (int): Number of EC2 instances to use for training.

	The key in resource_config is ‘InstanceCount’.







	
	instance_type (str): Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.

	The key in resource_config is ‘InstanceType’.












	stop_condition (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – When training should finish, e.g. MaxRuntimeInSeconds.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling the tuning job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	warm_start_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Configuration defining the type of warm start and
other required configurations.


	early_stopping_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies whether early stopping is enabled for the job.
Can be either ‘Auto’ or ‘Off’. If set to ‘Off’, early stopping will not be attempted.
If set to ‘Auto’, early stopping of some training jobs may happen, but is not guaranteed to.


	encrypt_inter_container_traffic (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether traffic between training containers
is encrypted for the training jobs started for this hyperparameter tuning job (default: False).


	vpc_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Contains values for VpcConfig (default: None):


	
	subnets (list[str]): List of subnet ids.

	The key in vpc_config is ‘Subnets’.







	
	security_group_ids (list[str]): List of security group ids.

	The key in vpc_config is ‘SecurityGroupIds’.























	
stop_tuning_job(name)

	Stop the Amazon SageMaker hyperparameter tuning job with the specified name.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker hyperparameter tuning job.



	Raises

	ClientError – If an error occurs while trying to stop the hyperparameter tuning job.










	
transform(job_name, model_name, strategy, max_concurrent_transforms, max_payload, env, input_config, output_config, resource_config, tags)

	Create an Amazon SageMaker transform job.


	Parameters

	
	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the transform job being created.


	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the SageMaker model being used for the transform job.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request.
Possible values are ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job.


	input_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary describing the input data (and its location) for the job.


	output_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary describing the output location for the job.


	resource_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary describing the resources to complete the job.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a training job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.













	
create_model(name, role, container_defs, vpc_config=None, enable_network_isolation=False, primary_container=None)

	Create an Amazon SageMaker Model.
Specify the S3 location of the model artifacts and Docker image containing
the inference code. Amazon SageMaker uses this information to deploy the
model in Amazon SageMaker. This method can also be used to create a Model for an Inference Pipeline
if you pass the list of container definitions through the containers parameter.
:param name: Name of the Amazon SageMaker Model to create.
:type name: str
:param role: An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs


that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
You must grant sufficient permissions to this role.





	Parameters

	
	container_defs (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]] or [dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A single container definition or a list of
container definitions which will be invoked sequentially while performing the prediction. If the list
contains only one container, then it’ll be passed to SageMaker Hosting as the PrimaryContainer and
otherwise, it’ll be passed as Containers.You can also specify the  return value of
sagemaker.get_container_def() or sagemaker.pipeline_container_def(), which will used to
create more advanced container configurations ,including model containers which need artifacts from S3.


	vpc_config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The VpcConfig set on the model (default: None)
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	enable_network_isolation (bool [https://docs.python.org/3/library/functions.html#bool]) – Wether the model requires network isolation or not.


	primary_container (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Docker image which defines the inference code.
You can also specify the return value of sagemaker.container_def(), which is used to create
more advanced container configurations, including model containers which need artifacts from S3. This
field is deprecated, please use container_defs instead.






	Returns

	Name of the Amazon SageMaker Model created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
create_model_from_job(training_job_name, name=None, role=None, primary_container_image=None, model_data_url=None, env=None, vpc_config_override='VPC_CONFIG_DEFAULT')

	Create an Amazon SageMaker Model from a SageMaker Training Job.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Amazon SageMaker Training Job name.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the SageMaker Model to create (default: None).
If not specified, the training job name is used.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, specified either by an IAM role name or
role ARN. If None, the RoleArn from the SageMaker Training Job will be used.


	primary_container_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Docker image reference (default: None). If None, it defaults to
the Training Image in training_job_name.


	model_data_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location of the model data (default: None). If None, defaults to
the ModelS3Artifacts of training_job_name.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict][string,string]) – Model environment variables (default: {}).


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use VpcConfig from training job.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.






	Returns

	The name of the created Model.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
create_model_package_from_algorithm(name, description, algorithm_arn, model_data)

	Create a SageMaker Model Package from the results of training with an Algorithm Package


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – ModelPackage name


	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Model Package description


	algorithm_arn (str [https://docs.python.org/3/library/stdtypes.html#str]) – arn or name of the algorithm used for training.


	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – s3 URI to the model artifacts produced by training













	
wait_for_model_package(model_package_name, poll=5)

	Wait for an Amazon SageMaker endpoint deployment to complete.


	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Endpoint to wait for.


	poll (int [https://docs.python.org/3/library/functions.html#int]) – Polling interval in seconds (default: 5).






	Returns

	Return value from the DescribeEndpoint API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
create_endpoint_config(name, model_name, initial_instance_count, instance_type, accelerator_type=None)

	Create an Amazon SageMaker endpoint configuration.

The endpoint configuration identifies the Amazon SageMaker model (created using the
CreateModel API) and the hardware configuration on which to deploy the model. Provide this
endpoint configuration to the CreateEndpoint API, which then launches the hardware and deploys the model.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker endpoint configuration to create.


	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker Model.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to launch. The actual number of
active instances for an endpoint at any given time varies due to autoscaling.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to launch, for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to the instance. For example,
‘ml.eia1.medium’. For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html






	Returns

	Name of the endpoint point configuration created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
create_endpoint(endpoint_name, config_name, wait=True)

	Create an Amazon SageMaker Endpoint according to the endpoint configuration specified in the request.

Once the Endpoint is created, client applications can send requests to obtain inferences.
The endpoint configuration is created using the CreateEndpointConfig API.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker Endpoint being created.


	config_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker endpoint configuration to deploy.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to wait for the endpoint deployment to complete before returning (default: True).






	Returns

	Name of the Amazon SageMaker Endpoint created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
delete_endpoint(endpoint_name)

	Delete an Amazon SageMaker Endpoint.


	Parameters

	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Amazon SageMaker Endpoint to delete.










	
wait_for_job(job, poll=5)

	Wait for an Amazon SageMaker training job to complete.


	Parameters

	
	job (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the training job to wait for.


	poll (int [https://docs.python.org/3/library/functions.html#int]) – Polling interval in seconds (default: 5).






	Returns

	Return value from the DescribeTrainingJob API.



	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the training job fails.










	
wait_for_compilation_job(job, poll=5)

	Wait for an Amazon SageMaker Neo compilation job to complete.


	Parameters

	
	job (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the compilation job to wait for.


	poll (int [https://docs.python.org/3/library/functions.html#int]) – Polling interval in seconds (default: 5).






	Returns

	Return value from the DescribeCompilationJob API.



	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the compilation job fails.










	
wait_for_tuning_job(job, poll=5)

	Wait for an Amazon SageMaker hyperparameter tuning job to complete.


	Parameters

	
	job (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the tuning job to wait for.


	poll (int [https://docs.python.org/3/library/functions.html#int]) – Polling interval in seconds (default: 5).






	Returns

	Return value from the DescribeHyperParameterTuningJob API.



	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the hyperparameter tuning job fails.










	
wait_for_transform_job(job, poll=5)

	Wait for an Amazon SageMaker transform job to complete.


	Parameters

	
	job (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the transform job to wait for.


	poll (int [https://docs.python.org/3/library/functions.html#int]) – Polling interval in seconds (default: 5).






	Returns

	Return value from the DescribeTransformJob API.



	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the transform job fails.










	
wait_for_endpoint(endpoint, poll=5)

	Wait for an Amazon SageMaker endpoint deployment to complete.


	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Endpoint to wait for.


	poll (int [https://docs.python.org/3/library/functions.html#int]) – Polling interval in seconds (default: 5).






	Returns

	Return value from the DescribeEndpoint API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
endpoint_from_job(job_name, initial_instance_count, instance_type, deployment_image=None, name=None, role=None, wait=True, model_environment_vars=None, vpc_config_override='VPC_CONFIG_DEFAULT', accelerator_type=None)

	Create an Endpoint using the results of a successful training job.

Specify the job name, Docker image containing the inference code, and hardware configuration to deploy
the model. Internally the API, creates an Amazon SageMaker model (that describes the model artifacts and
the Docker image containing inference code), endpoint configuration (describing the hardware to deploy
for hosting the model), and creates an Endpoint (launches the EC2 instances and deploys the model on them).
In response, the API returns the endpoint name to which you can send requests for inferences.


	Parameters

	
	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the training job to deploy the results of.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to launch. The actual number of
active instances for an endpoint at any given time varies due to autoscaling.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	deployment_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Docker image which defines the inference code to be used as the entry point for
accepting prediction requests. If not specified, uses the image used for the training job.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Endpoint to create. If not specified, uses the training job name.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
You must grant sufficient permissions to this role.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to wait for the endpoint deployment to complete before returning (default: True).


	model_environment_vars (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Environment variables to set on the model container
(default: None).


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Overrides VpcConfig set on the model.
Default: use VpcConfig from training job.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to the instance. For example,
‘ml.eia1.medium’. For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html






	Returns

	Name of the Endpoint that is created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
endpoint_from_model_data(model_s3_location, deployment_image, initial_instance_count, instance_type, name=None, role=None, wait=True, model_environment_vars=None, model_vpc_config=None, accelerator_type=None)

	Create and deploy to an Endpoint using existing model data stored in S3.


	Parameters

	
	model_s3_location (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 URI of the model artifacts to use for the endpoint.


	deployment_image (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Docker image which defines the runtime code to be used as
the entry point for accepting prediction requests.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to launch. The actual number of
active instances for an endpoint at any given time varies due to autoscaling.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction, e.g. ‘ml.c4.xlarge’.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Endpoint to create. If not specified, uses a name generated by
combining the image name with a timestamp.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
You must grant sufficient permissions to this role.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to wait for the endpoint deployment to complete before returning (default: True).


	model_environment_vars (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Environment variables to set on the model container
(default: None).


	model_vpc_config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The VpcConfig set on the model (default: None)
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to the instance. For example,
‘ml.eia1.medium’. For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html






	Returns

	Name of the Endpoint that is created.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
endpoint_from_production_variants(name, production_variants, tags=None, wait=True)

	Create an SageMaker Endpoint from a list of production variants.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Endpoint to create.


	production_variants (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The list of production variants to deploy.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of key-value pairs for tagging the endpoint (default: None).


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to wait for the endpoint deployment to complete before returning (default: True).






	Returns

	The name of the created Endpoint.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
expand_role(role)

	Expand an IAM role name into an ARN.

If the role is already in the form of an ARN, then the role is simply returned. Otherwise we retrieve the full
ARN and return it.


	Parameters

	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN).



	Returns

	The corresponding AWS IAM role ARN.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_caller_identity_arn()

	Returns the ARN user or role whose credentials are used to call the API.
:returns: The ARN user or role
:rtype: (str)






	
logs_for_job(job_name, wait=False, poll=10)

	Display the logs for a given training job, optionally tailing them until the
job is complete. If the output is a tty or a Jupyter cell, it will be color-coded
based on which instance the log entry is from.


	Parameters

	
	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the training job to display the logs for.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to keep looking for new log entries until the job completes (default: False).


	poll (int [https://docs.python.org/3/library/functions.html#int]) – The interval in seconds between polling for new log entries and job completion (default: 5).






	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If waiting and the training job fails.














	
sagemaker.session.container_def(image, model_data_url=None, env=None)

	Create a definition for executing a container as part of a SageMaker model.
:param image: Docker image to run for this container.
:type image: str
:param model_data_url: S3 URI of data required by this container,


e.g. SageMaker training job model artifacts (default: None).





	Parameters

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Environment variables to set inside the container (default: None).



	Returns

	A complete container definition object usable with the CreateModel API if passed via
PrimaryContainers field.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
sagemaker.session.pipeline_container_def(models, instance_type=None)

	Create a definition for executing a pipeline of containers as part of a SageMaker model.
:param models: this will be a list of sagemaker.Model objects in the order the inference
:type models: list[sagemaker.Model]
:param should be invoked.:
:param instance_type: The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’ (default: None).
:type instance_type: str


	Returns

	list of container definition objects usable with with the CreateModel API for inference
pipelines if passed via Containers field.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]










	
sagemaker.session.production_variant(model_name, instance_type, initial_instance_count=1, variant_name='AllTraffic', initial_weight=1, accelerator_type=None)

	Create a production variant description suitable for use in a ProductionVariant list as part of a
CreateEndpointConfig request.


	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the SageMaker model this production variant references.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type for this production variant. For example, ‘ml.c4.8xlarge’.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – The initial instance count for this production variant (default: 1).


	variant_name (string) – The VariantName of this production variant (default: ‘AllTraffic’).


	initial_weight (int [https://docs.python.org/3/library/functions.html#int]) – The relative InitialVariantWeight of this production variant (default: 1).


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator for this production variant. For example,
‘ml.eia1.medium’. For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html






	Returns

	An SageMaker ProductionVariant description



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
sagemaker.session.get_execution_role(sagemaker_session=None)

	Return the role ARN whose credentials are used to call the API.
Throws an exception if
:param sagemaker_session: Current sagemaker session
:type sagemaker_session: Session


	Returns

	The role ARN



	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str])










	
class sagemaker.session.s3_input(s3_data, distribution='FullyReplicated', compression=None, content_type=None, record_wrapping=None, s3_data_type='S3Prefix', input_mode=None, attribute_names=None, shuffle_config=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Amazon SageMaker channel configurations for S3 data sources.


	
config

	A SageMaker DataSource referencing a SageMaker S3DataSource.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]









Create a definition for input data used by an SageMaker training job.

See AWS documentation on the CreateTrainingJob API for more details on the parameters.


	Parameters

	
	s3_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – Defines the location of s3 data to train on.


	distribution (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values: ‘FullyReplicated’, ‘ShardedByS3Key’
(default: ‘FullyReplicated’).


	compression (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values: ‘Gzip’, None (default: None). This is used only in Pipe input mode.


	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – MIME type of the input data (default: None).


	record_wrapping (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values: ‘RecordIO’ (default: None).


	s3_data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Valid values: ‘S3Prefix’, ‘ManifestFile’, ‘AugmentedManifestFile’. If ‘S3Prefix’,
s3_data defines a prefix of s3 objects to train on. All objects with s3 keys beginning with
s3_data will be used to train. If ‘ManifestFile’ or ‘AugmentedManifestFile’, then s3_data
defines a single s3 manifest file or augmented manifest file (respectively), listing the s3 data to
train on. Both the ManifestFile and AugmentedManifestFile formats are described in the SageMaker API


documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/API_S3DataSource.html







	input_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional override for this channel’s input mode (default: None). By default, channels will
use the input mode defined on sagemaker.estimator.EstimatorBase.input_mode, but they will ignore
that setting if this parameter is set.
* None - Amazon SageMaker will use the input mode specified in the Estimator.
* ‘File’ - Amazon SageMaker copies the training dataset from the S3 location to a local directory.
* ‘Pipe’ - Amazon SageMaker streams data directly from S3 to the container via a Unix-named pipe.


	attribute_names (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of one or more attribute names to use that are found in a specified
AugmentedManifestFile.


	shuffle_config (ShuffleConfig) – If specified this configuration enables shuffling on this channel. See the
SageMaker API documentation for more info:
https://docs.aws.amazon.com/sagemaker/latest/dg/API_ShuffleConfig.html













	
class sagemaker.session.ShuffleConfig(seed)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Used to configure channel shuffling using a seed. See SageMaker
documentation for more detail: https://docs.aws.amazon.com/sagemaker/latest/dg/API_ShuffleConfig.html

Create a ShuffleConfig.
:param seed: the long value used to seed the shuffled sequence.
:type seed: long






	
class sagemaker.session.ModelContainer(model_data, image, env=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Amazon SageMaker Model configurations for inference pipelines.
.. attribute:: model_data


S3 Model artifact location


	type

	str









	
image

	Docker image URL in ECR


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
env

	Environment variable mapping


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],str [https://docs.python.org/3/library/stdtypes.html#str]]









Create a definition of a model which can be part of an Inference Pipeline
:param model_data: The S3 location of a SageMaker model data .tar.gz file.
:type model_data: str
:param image: A Docker image URI.
:type image: str
:param env: Environment variables to run with image when hosted in SageMaker (default: None).
:type env: dict[str, str]









          

      

      

    

  

    
      
          
            
  
Analytics


	
class sagemaker.analytics.AnalyticsMetricsBase

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for tuning job or training job analytics classes.
Understands common functionality like persistence and caching.


	
export_csv(filename)

	Persists the analytics dataframe to a file.


	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to save to.










	
dataframe(force_refresh=False)

	A pandas dataframe with lots of interesting results about this object.
Created by calling SageMaker List and Describe APIs and converting them into
a convenient tabular summary.


	Parameters

	force_refresh (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to fetch the latest data from SageMaker API.










	
clear_cache()

	Clear the object of all local caches of API methods, so
that the next time any properties are accessed they will be refreshed from
the service.










	
class sagemaker.analytics.HyperparameterTuningJobAnalytics(hyperparameter_tuning_job_name, sagemaker_session=None)

	Bases: sagemaker.analytics.AnalyticsMetricsBase

Fetch results about a hyperparameter tuning job and make them accessible for analytics.

Initialize a HyperparameterTuningJobAnalytics instance.


	Parameters

	
	hyperparameter_tuning_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the HyperparameterTuningJob to analyze.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created
using the default AWS configuration chain.









	
name

	Name of the HyperparameterTuningJob being analyzed






	
clear_cache()

	Clear the object of all local caches of API methods.






	
tuning_ranges

	A dictionary describing the ranges of all tuned hyperparameters.
The keys are the names of the hyperparameter, and the values are the ranges.






	
description(force_refresh=False)

	Call DescribeHyperParameterTuningJob for the hyperparameter tuning job.


	Parameters

	force_refresh (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to fetch the latest data from SageMaker API.



	Returns

	The Amazon SageMaker response for DescribeHyperParameterTuningJob.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
training_job_summaries(force_refresh=False)

	A (paginated) list of everything from ListTrainingJobsForTuningJob.


	Parameters

	force_refresh (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to fetch the latest data from SageMaker API.



	Returns

	The Amazon SageMaker response for ListTrainingJobsForTuningJob.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]














	
class sagemaker.analytics.TrainingJobAnalytics(training_job_name, metric_names=None, sagemaker_session=None)

	Bases: sagemaker.analytics.AnalyticsMetricsBase

Fetch training curve data from CloudWatch Metrics for a specific training job.

Initialize a TrainingJobAnalytics instance.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the TrainingJob to analyze.


	metric_names (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – string names of all the metrics to collect for this training job.
If not specified, then it will use all metric names configured for this job.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, one is specified
using the default AWS configuration chain.









	
CLOUDWATCH_NAMESPACE = '/aws/sagemaker/TrainingJobs'

	




	
name

	Name of the TrainingJob being analyzed






	
clear_cache()

	Clear the object of all local caches of API methods, so
that the next time any properties are accessed they will be refreshed from
the service.













          

      

      

    

  

    
      
          
            
  
MXNet


MXNet Estimator


	
class sagemaker.mxnet.estimator.MXNet(entry_point, source_dir=None, hyperparameters=None, py_version='py2', framework_version=None, image_name=None, distributions=None, **kwargs)

	Bases: sagemaker.estimator.Framework

Handle end-to-end training and deployment of custom MXNet code.

This Estimator executes an MXNet script in a managed MXNet execution environment, within a SageMaker
Training Job. The managed MXNet environment is an Amazon-built Docker container that executes functions
defined in the supplied entry_point Python script.

Training is started by calling fit() on this Estimator.
After training is complete, calling deploy() creates a
hosted SageMaker endpoint and returns an MXNetPredictor instance
that can be used to perform inference against the hosted model.

Technical documentation on preparing MXNet scripts for SageMaker training and using the MXNet Estimator is
available on the project home-page: https://github.com/aws/sagemaker-python-sdk


	Parameters

	
	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to training. This should be compatible with either Python 2.7 or Python 3.5.


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from tne entry point file (default: None). Structure within this
directory are preserved when training on Amazon SageMaker.


	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters that will be used for training (default: None).
The hyperparameters are made accessible as a dict[str, str] to the training code on SageMaker.
For convenience, this accepts other types for keys and values, but str() will be called
to convert them before training.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).
One of ‘py2’ or ‘py3’.


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – MXNet version you want to use for executing your model training code.
List of supported versions https://github.com/aws/sagemaker-python-sdk#mxnet-sagemaker-estimators


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 
	If specified, the estimator will use this image for training and hosting, instead of

	selecting the appropriate SageMaker official image based on framework_version and py_version. It can
be an ECR url or dockerhub image and tag.



	Examples:

	123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0
custom-image:latest.










	distributions (dict): A dictionary with information on how to run distributed training

	(default: None).








	**kwargs – Additional kwargs passed to the Framework constructor.









	
LATEST_VERSION = '1.3'

	




	
create_model(model_server_workers=None, role=None, vpc_config_override='VPC_CONFIG_DEFAULT')

	Create a SageMaker MXNetModel object that can be deployed to an Endpoint.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.






	Returns

	
	A SageMaker MXNetModel object.

	See MXNetModel() for full details.









	Return type

	sagemaker.mxnet.model.MXNetModel
















MXNet Model


	
class sagemaker.mxnet.model.MXNetModel(model_data, role, entry_point, image=None, py_version='py2', framework_version='1.2', predictor_cls=<class 'sagemaker.mxnet.model.MXNetPredictor'>, model_server_workers=None, **kwargs)

	Bases: sagemaker.model.FrameworkModel

An MXNet SageMaker Model that can be deployed to a SageMaker Endpoint.

Initialize an MXNetModel.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to model hosting. This should be compatible with either Python 2.7 or Python 3.5.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI (default: None). If not specified, a default image for MXNet will be used.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – MXNet version you want to use for executing your model training code.


	predictor_cls (callable[str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.session.Session]) – A function to call to create a predictor
with an endpoint name and SageMaker Session. If specified, deploy() returns the result of
invoking this function on the created endpoint name.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	**kwargs – Keyword arguments passed to the FrameworkModel initializer.









	
prepare_container_def(instance_type, accelerator_type=None)

	Return a container definition with framework configuration set in model environment variables.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]
















MXNet Predictor


	
class sagemaker.mxnet.model.MXNetPredictor(endpoint_name, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

A RealTimePredictor for inference against MXNet Endpoints.

This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for MXNet
inference.

Initialize an MXNetPredictor.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to perform inference on.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


















          

      

      

    

  

    
      
          
            
  
TensorFlow


TensorFlow Estimator


	
class sagemaker.tensorflow.estimator.TensorFlow(training_steps=None, evaluation_steps=None, checkpoint_path=None, py_version='py2', framework_version=None, model_dir=None, requirements_file='', image_name=None, script_mode=False, distributions=None, **kwargs)

	Bases: sagemaker.estimator.Framework

Handle end-to-end training and deployment of user-provided TensorFlow code.

Initialize an TensorFlow estimator.
:param training_steps: Perform this many steps of training. None, the default means train forever.
:type training_steps: int
:param evaluation_steps: Perform this many steps of evaluation. None, the default means that evaluation


runs until input from eval_input_fn is exhausted (or another exception is raised).





	Parameters

	
	checkpoint_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies S3 location where checkpoint data during model training can be
saved (default: None). For distributed model training, this parameter is required.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – TensorFlow version you want to use for executing your model training code.
List of supported versions https://github.com/aws/sagemaker-python-sdk#tensorflow-sagemaker-estimators


	model_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location where the checkpoint data and models can be exported to during training
(default: None). If not specified a default S3 URI will be generated. It will be passed in the
training script as one of the command line arguments.


	requirements_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a requirements.txt file (default: ‘’). The path should be within and
relative to source_dir. Details on the format can be found in the
Pip User Guide [https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format].


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – If specified, the estimator will use this image for training and hosting, instead of
selecting the appropriate SageMaker official image based on framework_version and py_version. It can
be an ECR url or dockerhub image and tag.



	Examples:

	123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0
custom-image:latest.











	script_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True will the estimator will use the Script Mode containers (default: False).
This will be ignored if py_version is set to ‘py3’.


	distributions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with information on how to run distributed training
(default: None). Currently we support distributed training with parameter servers and MPI. To enable
parameter server use the following setup:



’parameter_server’:
{


’enabled’: True




}




}





	To enable MPI:

	
	{

	‘mpi’:
{


’enabled’: True




}





}








	**kwargs – Additional kwargs passed to the Framework constructor.









	
LATEST_VERSION = '1.12'

	




	
fit(inputs=None, wait=True, logs=True, job_name=None, run_tensorboard_locally=False)

	Train a model using the input training dataset.

See fit() for more details.


	Parameters

	
	inputs (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or sagemaker.session.s3_input) – Information about the training data.
This can be one of three types:
(str) - the S3 location where training data is saved.
(dict[str, str] or dict[str, sagemaker.session.s3_input]) - If using multiple channels for


training data, you can specify a dict mapping channel names
to strings or s3_input() objects.





	(sagemaker.session.s3_input) - channel configuration for S3 data sources that can provide

	additional information as well as the path to the training dataset.
See sagemaker.session.s3_input() for full details.








	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.


	run_tensorboard_locally (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to execute TensorBoard in a different process with
downloaded checkpoint information (default: False). This is an experimental feature, and requires
TensorBoard and AWS CLI to be installed. It terminates TensorBoard when execution ends.













	
create_model(model_server_workers=None, role=None, vpc_config_override='VPC_CONFIG_DEFAULT', endpoint_type=None)

	Create a SageMaker TensorFlowModel object that can be deployed to an Endpoint.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	endpoint_type – Optional. Selects the software stack used by the inference server.
If  not specified, the model will be configured to use the default
SageMaker model server. If ‘tensorflow-serving’, the model will be configured to
use the SageMaker Tensorflow Serving container.






	Returns

	
	A SageMaker TensorFlowModel object.

	See TensorFlowModel() for full details.









	Return type

	sagemaker.tensorflow.model.TensorFlowModel










	
hyperparameters()

	Return hyperparameters used by your custom TensorFlow code during model training.






	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training,
calls this method to find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]
















TensorFlow Model


	
class sagemaker.tensorflow.model.TensorFlowModel(model_data, role, entry_point, image=None, py_version='py2', framework_version='1.11', predictor_cls=<class 'sagemaker.tensorflow.model.TensorFlowPredictor'>, model_server_workers=None, **kwargs)

	Bases: sagemaker.model.FrameworkModel

Initialize an TensorFlowModel.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to model hosting. This should be compatible with either Python 2.7 or Python 3.5.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI (default: None). If not specified, a default image for
TensorFlow will be used.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – TensorFlow version you want to use for executing your model training code.


	predictor_cls (callable[str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.session.Session]) – A function to call to create a predictor
with an endpoint name and SageMaker Session. If specified, deploy() returns the result of
invoking this function on the created endpoint name.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	**kwargs – Keyword arguments passed to the FrameworkModel initializer.









	
prepare_container_def(instance_type, accelerator_type=None)

	Return a container definition with framework configuration set in model environment variables.

This also uploads user-supplied code to S3.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]
















TensorFlow Predictor


	
class sagemaker.tensorflow.model.TensorFlowPredictor(endpoint_name, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

A RealTimePredictor for inference against TensorFlow ``Endpoint``s.

This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for MXNet
inference

Initialize an TensorFlowPredictor.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to perform inference on.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.















TensorFlow Serving Model


	
class sagemaker.tensorflow.serving.Model(model_data, role, image=None, framework_version='1.11', container_log_level=None, predictor_cls=<class 'sagemaker.tensorflow.serving.Predictor'>, **kwargs)

	Bases: sagemaker.model.Model

Initialize a Model.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker APIs that
create Amazon SageMaker endpoints use this role to access model artifacts.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI (default: None). If not specified, a default image for
TensorFlow Serving will be used.


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. TensorFlow Serving version you want to use.


	container_log_level (int [https://docs.python.org/3/library/functions.html#int]) – Log level to use within the container (default: logging.ERROR).
Valid values are defined in the Python logging module.


	predictor_cls (callable[str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.session.Session]) – A function to call to create a
predictor with an endpoint name and SageMaker Session. If specified, deploy()
returns the result of invoking this function on the created endpoint name.


	**kwargs – Keyword arguments passed to the Model initializer.









	
FRAMEWORK_NAME = 'tensorflow-serving'

	




	
LOG_LEVEL_PARAM_NAME = 'SAGEMAKER_TFS_NGINX_LOGLEVEL'

	




	
LOG_LEVEL_MAP = {10: 'debug', 20: 'info', 30: 'warn', 40: 'error', 50: 'crit'}

	




	
prepare_container_def(instance_type, accelerator_type=None)

	Return a dict created by sagemaker.container_def() for deploying this model to a specified instance type.

Subclasses can override this to provide custom container definitions for
deployment to a specific instance type. Called by deploy().


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]
















TensorFlow Serving Predictor


	
class sagemaker.tensorflow.serving.Predictor(endpoint_name, sagemaker_session=None, serializer=<sagemaker.predictor._JsonSerializer object>, deserializer=<sagemaker.predictor._JsonDeserializer object>, content_type=None, model_name=None, model_version=None)

	Bases: sagemaker.predictor.RealTimePredictor

A RealTimePredictor implementation for inference against TensorFlow Serving endpoints.

Initialize a TFSPredictor. See sagemaker.RealTimePredictor for
more info about parameters.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to perform inference on.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions
with Amazon SageMaker APIs and any other AWS services needed. If not specified,
the estimator creates one using the default AWS configuration chain.


	serializer (callable) – Optional. Default serializes input data to json. Handles dicts,
lists, and numpy arrays.


	deserializer (callable) – Optional. Default parses the response using json.load(...).


	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. The “ContentType” for invocation requests. If specified,
overrides the content_type from the serializer (default: None).


	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. The name of the SavedModel model that should handle the
request. If not specified, the endpoint’s default model will handle the request.


	model_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. The version of the SavedModel model that should handle
the request. If not specified, the latest version of the model will be used.









	
classify(data)

	




	
regress(data)

	




	
predict(data, initial_args=None)

	Return the inference from the specified endpoint.


	Parameters

	
	data (object [https://docs.python.org/3/library/functions.html#object]) – Input data for which you want the model to provide inference.
If a serializer was specified when creating the RealTimePredictor, the result of the
serializer is sent as input data. Otherwise the data must be sequence of bytes, and
the predict method then sends the bytes in the request body as is.


	initial_args (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional. Default arguments for boto3
invoke_endpoint call. Default is None (no default arguments).






	Returns

	
	Inference for the given input. If a deserializer was specified when creating

	the RealTimePredictor, the result of the deserializer is returned. Otherwise the response
returns the sequence of bytes as is.









	Return type

	object [https://docs.python.org/3/library/functions.html#object]



















          

      

      

    

  

    
      
          
            
  
Scikit Learn


Scikit Learn Estimator


	
class sagemaker.sklearn.estimator.SKLearn(entry_point, framework_version='0.20.0', source_dir=None, hyperparameters=None, py_version='py3', image_name=None, **kwargs)

	Bases: sagemaker.estimator.Framework

Handle end-to-end training and deployment of custom Scikit-learn code.

This Estimator executes an Scikit-learn script in a managed Scikit-learn execution environment, within a
SageMaker Training Job. The managed Scikit-learn environment is an Amazon-built Docker container that executes
functions defined in the supplied entry_point Python script.

Training is started by calling fit() on this Estimator.
After training is complete, calling deploy() creates a
hosted SageMaker endpoint and returns an SKLearnPredictor instance
that can be used to perform inference against the hosted model.

Technical documentation on preparing Scikit-learn scripts for SageMaker training and using the Scikit-learn
Estimator is available on the project home-page: https://github.com/aws/sagemaker-python-sdk


	Parameters

	
	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to training. This should be compatible with either Python 2.7 or Python 3.5.


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from tne entry point file (default: None). Structure within this
directory are preserved when training on Amazon SageMaker.


	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters that will be used for training (default: None).
The hyperparameters are made accessible as a dict[str, str] to the training code on SageMaker.
For convenience, this accepts other types for keys and values, but str() will be called
to convert them before training.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).
One of ‘py2’ or ‘py3’.


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Scikit-learn version you want to use for executing your model training code.
List of supported versions https://github.com/aws/sagemaker-python-sdk#sklearn-sagemaker-estimators


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – If specified, the estimator will use this image for training and hosting, instead of
selecting the appropriate SageMaker official image based on framework_version and py_version. It can
be an ECR url or dockerhub image and tag.
.. rubric:: Examples

123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0
custom-image:latest.




	**kwargs – Additional kwargs passed to the Framework constructor.









	
create_model(model_server_workers=None, role=None, vpc_config_override='VPC_CONFIG_DEFAULT', **kwargs)

	Create a SageMaker SKLearnModel object that can be deployed to an Endpoint.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.


	**kwargs – Passed to initialization of SKLearnModel.






	Returns

	
	A SageMaker SKLearnModel object.

	See SKLearnModel() for full details.









	Return type

	sagemaker.sklearn.model.SKLearnModel
















Scikit Learn Model


	
class sagemaker.sklearn.model.SKLearnModel(model_data, role, entry_point, image=None, py_version='py3', framework_version='0.20.0', predictor_cls=<class 'sagemaker.sklearn.model.SKLearnPredictor'>, model_server_workers=None, **kwargs)

	Bases: sagemaker.model.FrameworkModel

An Scikit-learn SageMaker Model that can be deployed to a SageMaker Endpoint.

Initialize an SKLearnModel.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to model hosting. This should be compatible with either Python 2.7 or Python 3.5.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI (default: None). If not specified, a default image for Scikit-learn
will be used.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Scikit-learn version you want to use for executing your model training code.


	predictor_cls (callable[str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.session.Session]) – A function to call to create a predictor
with an endpoint name and SageMaker Session. If specified, deploy() returns the result of
invoking this function on the created endpoint name.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	**kwargs – Keyword arguments passed to the FrameworkModel initializer.









	
prepare_container_def(instance_type, accelerator_type=None)

	Return a container definition with framework configuration set in model environment variables.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]
















Scikit Learn Predictor


	
class sagemaker.sklearn.model.SKLearnPredictor(endpoint_name, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

A RealTimePredictor for inference against Scikit-learn Endpoints.

This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for Scikit-learn
inference.

Initialize an SKLearnPredictor.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to perform inference on.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


















          

      

      

    

  

    
      
          
            
  
PyTorch


PyTorch Estimator


	
class sagemaker.pytorch.estimator.PyTorch(entry_point, source_dir=None, hyperparameters=None, py_version='py3', framework_version=None, image_name=None, **kwargs)

	Bases: sagemaker.estimator.Framework

Handle end-to-end training and deployment of custom PyTorch code.

This Estimator executes an PyTorch script in a managed PyTorch execution environment, within a SageMaker
Training Job. The managed PyTorch environment is an Amazon-built Docker container that executes functions
defined in the supplied entry_point Python script.

Training is started by calling fit() on this Estimator.
After training is complete, calling deploy() creates a
hosted SageMaker endpoint and returns an PyTorchPredictor instance
that can be used to perform inference against the hosted model.

Technical documentation on preparing PyTorch scripts for SageMaker training and using the PyTorch Estimator is
available on the project home-page: https://github.com/aws/sagemaker-python-sdk


	Parameters

	
	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to training. This should be compatible with either Python 2.7 or Python 3.5.


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from tne entry point file (default: None). Structure within this
directory are preserved when training on Amazon SageMaker.


	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters that will be used for training (default: None).
The hyperparameters are made accessible as a dict[str, str] to the training code on SageMaker.
For convenience, this accepts other types for keys and values, but str() will be called
to convert them before training.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py3’).
One of ‘py2’ or ‘py3’.


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – PyTorch version you want to use for executing your model training code.
List of supported versions https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – If specified, the estimator will use this image for training and hosting, instead of
selecting the appropriate SageMaker official image based on framework_version and py_version. It can
be an ECR url or dockerhub image and tag.
.. rubric:: Examples

123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0
custom-image:latest.




	**kwargs – Additional kwargs passed to the Framework constructor.









	
LATEST_VERSION = '1.0'

	




	
create_model(model_server_workers=None, role=None, vpc_config_override='VPC_CONFIG_DEFAULT')

	Create a SageMaker PyTorchModel object that can be deployed to an Endpoint.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.






	Returns

	
	A SageMaker PyTorchModel object.

	See PyTorchModel() for full details.









	Return type

	sagemaker.pytorch.model.PyTorchModel
















PyTorch Model


	
class sagemaker.pytorch.model.PyTorchModel(model_data, role, entry_point, image=None, py_version='py3', framework_version='0.4', predictor_cls=<class 'sagemaker.pytorch.model.PyTorchPredictor'>, model_server_workers=None, **kwargs)

	Bases: sagemaker.model.FrameworkModel

An PyTorch SageMaker Model that can be deployed to a SageMaker Endpoint.

Initialize an PyTorchModel.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to model hosting. This should be compatible with either Python 2.7 or Python 3.5.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI (default: None). If not specified, a default image for PyTorch will be used.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py3’).


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – PyTorch version you want to use for executing your model training code.


	predictor_cls (callable[str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.session.Session]) – A function to call to create a predictor
with an endpoint name and SageMaker Session. If specified, deploy() returns the result of
invoking this function on the created endpoint name.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	**kwargs – Keyword arguments passed to the FrameworkModel initializer.









	
prepare_container_def(instance_type, accelerator_type=None)

	Return a container definition with framework configuration set in model environment variables.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]
















PyTorch Predictor


	
class sagemaker.pytorch.model.PyTorchPredictor(endpoint_name, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

A RealTimePredictor for inference against PyTorch Endpoints.

This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for PyTorch
inference.

Initialize an PyTorchPredictor.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to perform inference on.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


















          

      

      

    

  

    
      
          
            
  
Chainer


Chainer Estimator


	
class sagemaker.chainer.estimator.Chainer(entry_point, use_mpi=None, num_processes=None, process_slots_per_host=None, additional_mpi_options=None, source_dir=None, hyperparameters=None, py_version='py3', framework_version=None, image_name=None, **kwargs)

	Bases: sagemaker.estimator.Framework

Handle end-to-end training and deployment of custom Chainer code.

This Estimator executes an Chainer script in a managed Chainer execution environment, within a SageMaker
Training Job. The managed Chainer environment is an Amazon-built Docker container that executes functions
defined in the supplied entry_point Python script.

Training is started by calling fit() on this Estimator.
After training is complete, calling deploy() creates a
hosted SageMaker endpoint and returns an ChainerPredictor instance
that can be used to perform inference against the hosted model.

Technical documentation on preparing Chainer scripts for SageMaker training and using the Chainer Estimator is
available on the project home-page: https://github.com/aws/sagemaker-python-sdk


	Parameters

	
	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to training. This should be compatible with either Python 2.7 or Python 3.5.


	use_mpi (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, entry point is run as an MPI script. By default, the Chainer Framework runs
the entry point with ‘mpirun’ if more than one instance is used.


	num_processes (int [https://docs.python.org/3/library/functions.html#int]) – Total number of processes to run the entry point with. By default, the Chainer
Framework runs one process per GPU (on GPU instances), or one process per host (on CPU instances).


	process_slots_per_host (int [https://docs.python.org/3/library/functions.html#int]) – The number of processes that can run on each instance. By default, this is
set to the number of GPUs on the instance (on GPU instances), or one (on CPU instances).


	additional_mpi_options (str [https://docs.python.org/3/library/stdtypes.html#str]) – String of options to the ‘mpirun’ command used to run the entry point.
For example, ‘-X NCCL_DEBUG=WARN’ will pass that option string to the mpirun command.


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from tne entry point file (default: None). Structure within this
directory are preserved when training on Amazon SageMaker.


	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters that will be used for training (default: None).
The hyperparameters are made accessible as a dict[str, str] to the training code on SageMaker.
For convenience, this accepts other types for keys and values, but str() will be called
to convert them before training.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).
One of ‘py2’ or ‘py3’.


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Chainer version you want to use for executing your model training code.
List of supported versions https://github.com/aws/sagemaker-python-sdk#chainer-sagemaker-estimators


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – If specified, the estimator will use this image for training and hosting, instead of
selecting the appropriate SageMaker official image based on framework_version and py_version. It can
be an ECR url or dockerhub image and tag.
.. rubric:: Examples

123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0
custom-image:latest.




	**kwargs – Additional kwargs passed to the Framework constructor.









	
LATEST_VERSION = '5.0.0'

	




	
hyperparameters()

	Return hyperparameters used by your custom Chainer code during training.






	
create_model(model_server_workers=None, role=None, vpc_config_override='VPC_CONFIG_DEFAULT')

	Create a SageMaker ChainerModel object that can be deployed to an Endpoint.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.






	Returns

	
	A SageMaker ChainerModel object.

	See ChainerModel() for full details.









	Return type

	sagemaker.chainer.model.ChainerModel
















Chainer Model


	
class sagemaker.chainer.model.ChainerModel(model_data, role, entry_point, image=None, py_version='py3', framework_version='4.1.0', predictor_cls=<class 'sagemaker.chainer.model.ChainerPredictor'>, model_server_workers=None, **kwargs)

	Bases: sagemaker.model.FrameworkModel

An Chainer SageMaker Model that can be deployed to a SageMaker Endpoint.

Initialize an ChainerModel.


	Parameters

	
	model_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The S3 location of a SageMaker model data .tar.gz file.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file which should be executed
as the entry point to model hosting. This should be compatible with either Python 2.7 or Python 3.5.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Docker image URI (default: None). If not specified, a default image for Chainer will be used.


	py_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python version you want to use for executing your model training code (default: ‘py2’).


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Chainer version you want to use for executing your model training code.


	predictor_cls (callable[str [https://docs.python.org/3/library/stdtypes.html#str], sagemaker.session.Session]) – A function to call to create a predictor
with an endpoint name and SageMaker Session. If specified, deploy() returns the result of
invoking this function on the created endpoint name.


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	**kwargs – Keyword arguments passed to the FrameworkModel initializer.









	
prepare_container_def(instance_type, accelerator_type=None)

	Return a container definition with framework configuration set in model environment variables.


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Elastic Inference accelerator type to deploy to the instance for loading and
making inferences to the model. For example, ‘ml.eia1.medium’.






	Returns

	A container definition object usable with the CreateModel API.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]
















Chainer Predictor


	
class sagemaker.chainer.model.ChainerPredictor(endpoint_name, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

A RealTimePredictor for inference against Chainer Endpoints.

This is able to serialize Python lists, dictionaries, and numpy arrays to multidimensional tensors for Chainer
inference.

Initialize an ChainerPredictor.


	Parameters

	
	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to perform inference on.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


















          

      

      

    

  

    
      
          
            
  
RLEstimator


RLEstimator Estimator


	
class sagemaker.rl.estimator.RLEstimator(entry_point, toolkit=None, toolkit_version=None, framework=None, source_dir=None, hyperparameters=None, image_name=None, metric_definitions=None, **kwargs)

	Bases: sagemaker.estimator.Framework

Handle end-to-end training and deployment of custom RLEstimator code.

This Estimator executes an RLEstimator script in a managed
Reinforcement Learning (RL) execution environment within a SageMaker Training Job.
The managed RL environment is an Amazon-built Docker container that executes
functions defined in the supplied entry_point Python script.

Training is started by calling fit()
on this Estimator. After training is complete, calling
deploy() creates a
hosted SageMaker endpoint and based on the specified framework returns
an MXNetPredictor or
Predictor instance
that can be used to perform inference against the hosted model.

Technical documentation on preparing RLEstimator scripts for SageMaker training
and using the RLEstimator is available on the project homepage:
https://github.com/aws/sagemaker-python-sdk


	Parameters

	
	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file
which should be executed as the entry point to training.
This should be compatible with Python 3.5 for MXNet or Python 3.6 for TensorFlow.


	toolkit (sagemaker.rl.RLToolkit) – RL toolkit you want to use
for executing your model training code.


	toolkit_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – RL toolkit version you want to be use
for executing your model training code.


	framework (sagemaker.rl.RLFramework) – Framework (MXNet or TensorFlow)
you want to be used as a toolkit backed for reinforcement learning training.


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from the entry point file (default: None).
Structure within this directory is preserved when training on Amazon SageMaker.


	hyperparameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Hyperparameters that will be used for training (default: None).
The hyperparameters are made accessible as a dict[str, str]
to the training code on SageMaker. For convenience, this accepts other types
for keys and values.


	image_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – An ECR url. If specified, the estimator will use this image
for training and hosting, instead of selecting the appropriate SageMaker
official image based on framework_version and py_version.
Example: 123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0


	metric_definitions (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of dictionaries that defines the metric(s)
used to evaluate the training jobs. Each dictionary contains two keys:
‘Name’ for the name of the metric, and ‘Regex’ for the regular expression used to
extract the metric from the logs. This should be defined only for jobs
that don’t use an Amazon algorithm.


	**kwargs – Additional kwargs passed to the Framework
constructor.









	
COACH_LATEST_VERSION = '0.11.0'

	




	
RAY_LATEST_VERSION = '0.5.3'

	




	
create_model(role=None, vpc_config_override='VPC_CONFIG_DEFAULT', entry_point=None, source_dir=None, dependencies=None)

	Create a SageMaker RLEstimatorModel object that can be deployed to an Endpoint.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used
during transform jobs. If not specified, the role from the Estimator will be used.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig
set on the model. Default: use subnets and security groups from this Estimator.


	’Subnets’ (list[str]): List of subnet ids.


	’SecurityGroupIds’ (list[str]): List of security group ids.







	entry_point (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to the Python source file
which should be executed as the entry point for MXNet hosting.
This should be compatible with Python 3.5 (default: self.entry_point)


	source_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path (absolute or relative) to a directory with any other training
source code dependencies aside from tne entry point file (default: self.source_dir).
Structure within this directory are preserved when hosting on Amazon SageMaker.


	dependencies (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of paths to directories (absolute or relative) with
any additional libraries that will be exported to the container
(default: self.dependencies). The library folders will be copied to SageMaker
in the same folder where the entry_point is copied. If the `source_dir` points
to S3, code will be uploaded and the S3 location will be used instead.






	Returns

	
	Depending on input parameters returns

	one of the following:


	
	sagemaker.model.FrameworkModel - in case image_name was specified

	on the estimator;







	
	sagemaker.mxnet.MXNetModel - if image_name wasn’t specified and

	MXNet was used as RL backend;







	
	sagemaker.tensorflow.serving.Model - if image_name wasn’t specified and

	TensorFlow was used as RL backend.

















	Return type

	sagemaker.model.FrameworkModel










	
train_image()

	Return the Docker image to use for training.

The fit() method, which does the model training,
calls this method to find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
hyperparameters()

	Return hyperparameters used by your custom TensorFlow code during model training.






	
classmethod default_metric_definitions(toolkit)

	Provides default metric definitions based on provided toolkit.


	Parameters

	toolkit (sagemaker.rl.RLToolkit) – RL Toolkit to be used for training.



	Returns

	metric definitions



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



















          

      

      

    

  

    
      
          
            
  
SparkML Serving


SparkML Model


	
class sagemaker.sparkml.model.SparkMLModel(model_data, role=None, spark_version=2.2, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Model data and S3 location holder for MLeap serialized SparkML model. Calling
deploy() creates an Endpoint and return
a Predictor to performs predictions against an MLeap serialized SparkML model .

Initialize a SparkMLModel..
:param model_data: The S3 location of a SageMaker model data .tar.gz file. For SparkML, this will be the


output that has been produced by the Spark job after serializing the Model via MLeap.





	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs
that create Amazon SageMaker endpoints use this role to access training data and model artifacts.
After the endpoint is created, the inference code might use the IAM role,
if it needs to access an AWS resource.


	spark_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Spark version you want to use for executing the inference (default: ‘2.2’).


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain. For local mode, please do not pass this variable.















SparkML Predictor


	
class sagemaker.sparkml.model.SparkMLPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Performs predictions against an MLeap serialized SparkML model.

The implementation of predict() in this
RealTimePredictor requires a json as input. The input should follow the json format
as documented.

predict() returns a csv output, comma separated if the output is a list.

Initializes a SparkMLPredictor which should be used with SparkMLModel to perform predictions against SparkML
models serialized via MLeap. The response is returned in text/csv format which is the default response format
for SparkML Serving container.
:param endpoint: The name of the endpoint to perform inference on.
:type endpoint: str
:param sagemaker_session: Session object which manages interactions with


Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.

















          

      

      

    

  

    
      
          
            
  
Amazon Estimators

Base class for Amazon Estimator implementations


	
class sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase(role, train_instance_count, train_instance_type, data_location=None, **kwargs)

	Bases: sagemaker.estimator.EstimatorBase

Base class for Amazon first-party Estimator implementations. This class isn’t intended
to be instantiated directly.

Initialize an AmazonAlgorithmEstimatorBase.


	Parameters

	data_location (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The s3 prefix to upload RecordSet objects to, expressed as an
S3 url. For example “s3://example-bucket/some-key-prefix/”. Objects will be
saved in a unique sub-directory of the specified location. If None, a default
data location will be used.






	
feature_dim

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
mini_batch_size

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
repo_name = None

	




	
repo_version = None

	




	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
data_location

	




	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet

















          

      

      

    

  

    
      
          
            
  
FactorizationMachines

The Amazon SageMaker Factorization Machines algorithm.


	
class sagemaker.FactorizationMachines(role, train_instance_count, train_instance_type, num_factors, predictor_type, epochs=None, clip_gradient=None, eps=None, rescale_grad=None, bias_lr=None, linear_lr=None, factors_lr=None, bias_wd=None, linear_wd=None, factors_wd=None, bias_init_method=None, bias_init_scale=None, bias_init_sigma=None, bias_init_value=None, linear_init_method=None, linear_init_scale=None, linear_init_sigma=None, linear_init_value=None, factors_init_method=None, factors_init_scale=None, factors_init_sigma=None, factors_init_value=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

Factorization Machines is Estimator for general-purpose supervised learning.

Amazon SageMaker Factorization Machines is a general-purpose supervised learning algorithm that you can use
for both classification and regression tasks. It is an extension of a linear model that is designed
to parsimoniously capture interactions between features within high dimensional sparse datasets.

This Estimator may be fit via calls to
fit(). It requires Amazon
Record protobuf serialized data to be stored in S3.
There is an utility record_set() that
can be used to upload data to S3 and creates RecordSet to be passed
to the fit call.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a FactorizationMachinesPredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.

FactorizationMachines Estimators can be configured by setting hyperparameters. The available hyperparameters for
FactorizationMachines are documented below.

For further information on the AWS FactorizationMachines algorithm,
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	num_factors (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of factorization.


	predictor_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of predictor ‘binary_classifier’ or ‘regressor’.


	epochs (int [https://docs.python.org/3/library/functions.html#int]) – Number of training epochs to run.


	clip_gradient (float [https://docs.python.org/3/library/functions.html#float]) – Optimizer parameter. Clip the gradient by projecting onto
the box [-clip_gradient, +clip_gradient]


	eps (float [https://docs.python.org/3/library/functions.html#float]) – Optimizer parameter. Small value to avoid division by 0.


	rescale_grad (float [https://docs.python.org/3/library/functions.html#float]) – Optimizer parameter. If set, multiplies the gradient with rescale_grad
before updating. Often choose to be 1.0/batch_size.


	bias_lr (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative learning rate for the bias term.


	linear_lr (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative learning rate for linear terms.


	factors_lr (float [https://docs.python.org/3/library/functions.html#float]) – Noon-negative learning rate for factorization terms.


	bias_wd (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative weight decay for the bias term.


	linear_wd (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative weight decay for linear terms.


	factors_wd (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative weight decay for factorization terms.


	bias_init_method (string) – Initialization method for the bias term: ‘normal’, ‘uniform’ or ‘constant’.


	bias_init_scale (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative range for initialization of the bias term that takes
effect when bias_init_method parameter is ‘uniform’


	bias_init_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative standard deviation for initialization of the bias term that takes
effect when bias_init_method parameter is ‘normal’.


	bias_init_value (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of the bias term  that takes effect
when bias_init_method parameter is ‘constant’.


	linear_init_method (string) – Initialization method for linear term: ‘normal’, ‘uniform’ or ‘constant’.


	linear_init_scale (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative range for initialization of linear terms that takes
effect when linear_init_method parameter is ‘uniform’.


	linear_init_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative standard deviation for initialization of linear terms that takes
effect when linear_init_method parameter is ‘normal’.


	linear_init_value (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of linear terms that takes effect
when linear_init_method parameter is ‘constant’.


	factors_init_method (string) – Initialization method for factorization term: ‘normal’,
‘uniform’ or ‘constant’.


	factors_init_scale (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative range for initialization of factorization terms that takes
effect when factors_init_method parameter is ‘uniform’.


	factors_init_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative standard deviation for initialization of factorization terms that
takes effect when factors_init_method parameter is ‘normal’.


	factors_init_value (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of factorization terms that takes
effect when factors_init_method parameter is ‘constant’.


	**kwargs – base class keyword argument values.









	
repo_name = 'factorization-machines'

	




	
repo_version = 1

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a FactorizationMachinesModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.














	
class sagemaker.FactorizationMachinesModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference S3 model data created by FactorizationMachines estimator. Calling deploy()
creates an Endpoint and returns FactorizationMachinesPredictor.






	
class sagemaker.FactorizationMachinesPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Performs binary-classification or regression prediction from input vectors.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The prediction is stored in the "score"
key of the Record.label field.
Please refer to the formats details described: https://docs.aws.amazon.com/sagemaker/latest/dg/fm-in-formats.html









          

      

      

    

  

    
      
          
            
  
IP Insights

The Amazon SageMaker IP Insights algorithm.


	
class sagemaker.IPInsights(role, train_instance_count, train_instance_type, num_entity_vectors, vector_dim, batch_metrics_publish_interval=None, epochs=None, learning_rate=None, num_ip_encoder_layers=None, random_negative_sampling_rate=None, shuffled_negative_sampling_rate=None, weight_decay=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

This estimator is for IP Insights, an unsupervised algorithm that learns usage patterns of IP addresses.

This Estimator may be fit via calls to
fit(). It requires
CSV data to be stored in S3.

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a IPInsightPredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.

IPInsights Estimators can be configured by setting hyperparamters.
The available hyperparamters are documented below.

For further information on the AWS IPInsights algorithm, please consult AWS technical documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/ip-insights-hyperparameters.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.m5.xlarge’.


	num_entity_vectors (int [https://docs.python.org/3/library/functions.html#int]) – Required. The number of embeddings to train for entities accessing online
resources. We recommend 2x the total number of unique entity IDs.


	vector_dim (int [https://docs.python.org/3/library/functions.html#int]) – Required. The size of the embedding vectors for both entity and IP addresses.


	batch_metrics_publish_interval (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The period at which to publish metrics (batches).


	epochs (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Maximum number of passes over the training data.


	learning_rate (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Learning rate for the optimizer.


	num_ip_encoder_layers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of fully-connected layers to encode IP address embedding.


	random_negative_sampling_rate (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The ratio of random negative samples to draw during training.
Random negative samples are randomly drawn IPv4 addresses.


	shuffled_negative_sampling_rate (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The ratio of shuffled negative samples to draw during
training. Shuffled negative samples are IP addresses picked from within a batch.


	weight_decay (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Weight decay coefficient. Adds L2 regularization.


	**kwargs – base class keyword argument values.









	
repo_name = 'ipinsights'

	




	
repo_version = 1

	




	
MINI_BATCH_SIZE = 10000

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Create a model for the latest s3 model produced by this estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.



	Returns

	references the latest s3 model data produced by this estimator.



	Return type

	IPInsightsModel














	
class sagemaker.IPInsightsModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference IPInsights s3 model data. Calling deploy() creates an
Endpoint and returns a Predictor that calculates anomaly scores for data points.






	
class sagemaker.IPInsightsPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Returns dot product of entity and IP address embeddings as a score for compatibility.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain
two columns. The first column should contain the entity ID. The second column should
contain the IPv4 address in dot notation.









          

      

      

    

  

    
      
          
            
  
K-means

The Amazon SageMaker K-means algorithm.


	
class sagemaker.KMeans(role, train_instance_count, train_instance_type, k, init_method=None, max_iterations=None, tol=None, num_trials=None, local_init_method=None, half_life_time_size=None, epochs=None, center_factor=None, eval_metrics=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

A k-means clustering AmazonAlgorithmEstimatorBase. Finds k clusters of data in an
unlabeled dataset.

This Estimator may be fit via calls to
fit_ndarray()
or fit(). The former allows a KMeans model
to be fit on a 2-dimensional numpy array. The latter requires Amazon
Record protobuf serialized data to be stored in S3.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html.

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a KMeansPredictor object that can be used to k-means
cluster assignments, using the trained k-means model hosted in the SageMaker Endpoint.

KMeans Estimators can be configured by setting hyperparameters. The available hyperparameters for KMeans
are documented below. For further information on the AWS KMeans algorithm, please consult AWS technical
documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html.


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	k (int [https://docs.python.org/3/library/functions.html#int]) – The number of clusters to produce.


	init_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to initialize cluster locations. One of ‘random’ or ‘kmeans++’.


	max_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum iterations for Lloyds EM procedure in the local kmeans used in finalize stage.


	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for change in ssd for early stopping in local kmeans.


	num_trials (int [https://docs.python.org/3/library/functions.html#int]) – Local version is run multiple times and the one with the best loss is chosen. This
determines how many times.


	local_init_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Initialization method for local version. One of ‘random’, ‘kmeans++’


	half_life_time_size (int [https://docs.python.org/3/library/functions.html#int]) – The points can have a decayed weight. When a point is observed its weight,
with regard to the computation of the cluster mean is 1. This weight will decay exponentially as we
observe more points. The exponent coefficient is chosen such that after observing
half_life_time_size points after the mentioned point, its weight will become 1/2. If set to 0,
there will be no decay.


	epochs (int [https://docs.python.org/3/library/functions.html#int]) – Number of passes done over the training data.


	center_factor (int [https://docs.python.org/3/library/functions.html#int]) – The algorithm will create num_clusters * extra_center_factor as it runs and
reduce the number of centers to k when finalizing


	eval_metrics (list [https://docs.python.org/3/library/stdtypes.html#list]) – JSON list of metrics types to be used for reporting the score for the model.
Allowed values are “msd” Means Square Error, “ssd”: Sum of square distance. If test data is provided,
the score shall be reported in terms of all requested metrics.


	**kwargs – base class keyword argument values.









	
repo_name = 'kmeans'

	




	
repo_version = 1

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
eval_metrics

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a KMeansModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.










	
hyperparameters()

	Return the SageMaker hyperparameters for training this KMeans Estimator










	
class sagemaker.KMeansModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference KMeans s3 model data. Calling deploy() creates an Endpoint and return
a Predictor to performs k-means cluster assignment.






	
class sagemaker.KMeansPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Assigns input vectors to their closest cluster in a KMeans model.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The nearest cluster is stored in the closest_cluster
key of the Record.label field.









          

      

      

    

  

    
      
          
            
  
K-Nearest Neighbors

The Amazon SageMaker K-Nearest Neighbors (k-NN) algorithm.


	
class sagemaker.KNN(role, train_instance_count, train_instance_type, k, sample_size, predictor_type, dimension_reduction_type=None, dimension_reduction_target=None, index_type=None, index_metric=None, faiss_index_ivf_nlists=None, faiss_index_pq_m=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

k-nearest neighbors (KNN) is Estimator used for classification and regression.
This Estimator may be fit via calls to
fit(). It requires Amazon
Record protobuf serialized data to be stored in S3.
There is an utility record_set() that
can be used to upload data to S3 and creates RecordSet to be passed
to the fit call.
To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a KNNPredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.
KNN Estimators can be configured by setting hyperparameters. The available hyperparameters for
KNN are documented below.
For further information on the AWS KNN algorithm,
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/knn.html
:param role: An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and


APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.





	Parameters

	
	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	k (int [https://docs.python.org/3/library/functions.html#int]) – Required. Number of nearest neighbors.


	sample_size (int [https://docs.python.org/3/library/functions.html#int]) – Required. Number of data points to be sampled from the training data set.


	predictor_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Required. Type of inference to use on the data’s labels,
allowed values are ‘classifier’ and ‘regressor’.


	dimension_reduction_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Type of dimension reduction technique to use.
Valid values: “sign”, “fjlt”


	dimension_reduction_target (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Target dimension to reduce to. Required when
dimension_reduction_type is specified.


	index_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Type of index to use. Valid values are
“faiss.Flat”, “faiss.IVFFlat”, “faiss.IVFPQ”.


	index_metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Distance metric to measure between points when finding nearest neighbors.
Valid values are “COSINE”, “INNER_PRODUCT”, “L2”


	faiss_index_ivf_nlists (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Number of centroids to construct in the index if
index_type is “faiss.IVFFlat” or “faiss.IVFPQ”.


	faiss_index_pq_m (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Number of vector sub-components to construct in the index,
if index_type is “faiss.IVFPQ”.


	**kwargs – base class keyword argument values.









	
repo_name = 'knn'

	




	
repo_version = 1

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a KNNModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.














	
class sagemaker.KNNModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference S3 model data created by KNN estimator. Calling deploy()
creates an Endpoint and returns KNNPredictor.






	
class sagemaker.KNNPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Performs classification or regression prediction from input vectors.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The prediction is stored in the "predicted_label"
key of the Record.label field.









          

      

      

    

  

    
      
          
            
  
LDA

The Amazon SageMaker LDA algorithm.


	
class sagemaker.LDA(role, train_instance_type, num_topics, alpha0=None, max_restarts=None, max_iterations=None, tol=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

Latent Dirichlet Allocation (LDA) is Estimator used for unsupervised learning.

Amazon SageMaker Latent Dirichlet Allocation is an unsupervised learning algorithm that attempts to describe
a set of observations as a mixture of distinct categories. LDA is most commonly used to discover
a user-specified number of topics shared by documents within a text corpus.
Here each observation is a document, the features are the presence (or occurrence count) of each word, and
the categories are the topics.

This Estimator may be fit via calls to
fit(). It requires Amazon
Record protobuf serialized data to be stored in S3.
There is an utility record_set() that
can be used to upload data to S3 and creates RecordSet to be passed
to the fit call.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a LDAPredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.

LDA Estimators can be configured by setting hyperparameters. The available hyperparameters for
LDA are documented below.

For further information on the AWS LDA algorithm,
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/lda.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	num_topics (int [https://docs.python.org/3/library/functions.html#int]) – The number of topics for LDA to find within the data.


	alpha0 (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Initial guess for the concentration parameter


	max_restarts (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of restarts to perform during the Alternating Least Squares (ALS)
spectral decomposition phase of the algorithm.


	max_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The maximum number of iterations to perform during the
ALS phase of the algorithm.


	tol (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Target error tolerance for the ALS phase of the algorithm.


	**kwargs – base class keyword argument values.









	
repo_name = 'lda'

	




	
repo_version = 1

	




	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a LDAModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.










	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).

















	
class sagemaker.LDAModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference LDA s3 model data. Calling deploy() creates an Endpoint and return
a Predictor that transforms vectors to a lower-dimensional representation.






	
class sagemaker.LDAPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Transforms input vectors to lower-dimesional representations.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The lower dimension vector result is stored in the projection
key of the Record.label field.









          

      

      

    

  

    
      
          
            
  
LinearLearner

The Amazon SageMaker LinearLearner algorithm.


	
class sagemaker.LinearLearner(role, train_instance_count, train_instance_type, predictor_type, binary_classifier_model_selection_criteria=None, target_recall=None, target_precision=None, positive_example_weight_mult=None, epochs=None, use_bias=None, num_models=None, num_calibration_samples=None, init_method=None, init_scale=None, init_sigma=None, init_bias=None, optimizer=None, loss=None, wd=None, l1=None, momentum=None, learning_rate=None, beta_1=None, beta_2=None, bias_lr_mult=None, bias_wd_mult=None, use_lr_scheduler=None, lr_scheduler_step=None, lr_scheduler_factor=None, lr_scheduler_minimum_lr=None, normalize_data=None, normalize_label=None, unbias_data=None, unbias_label=None, num_point_for_scaler=None, margin=None, quantile=None, loss_insensitivity=None, huber_delta=None, early_stopping_patience=None, early_stopping_tolerance=None, num_classes=None, accuracy_top_k=None, f_beta=None, balance_multiclass_weights=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

An Estimator for binary classification and regression.

Amazon SageMaker Linear Learner provides a solution for both classification and regression problems, allowing
for exploring different training objectives simultaneously and choosing the best solution from a validation set.
It allows the user to explore a large number of models and choose the best, which optimizes either continuous
objectives such as mean square error, cross entropy loss, absolute error, etc., or discrete objectives suited
for classification such as F1 measure, precision@recall, accuracy. The implementation provides a significant
speedup over naive hyperparameter optimization techniques and an added convenience, when compared with
solutions providing a solution only to continuous objectives.

This Estimator may be fit via calls to
fit_ndarray()
or fit(). The former allows a
LinearLearner model to be fit on a 2-dimensional numpy array. The latter requires Amazon
Record protobuf serialized data to be stored in S3.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a LinearLearnerPredictor object that can be used
to make class or regression predictions, using the trained model.

LinearLearner Estimators can be configured by setting hyperparameters. The available hyperparameters for
LinearLearner are documented below. For further information on the AWS LinearLearner algorithm, please consult
AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	predictor_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of predictor to learn. Either “binary_classifier” or


	or "regressor". ("multiclass_classifier") – 


	binary_classifier_model_selection_criteria (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of ‘accuracy’, ‘f1’, ‘f_beta’,


	'recall_at_target_precision', 'cross_entropy_loss', 'loss_function' ('precision_at_target_recall',) – 


	target_recall (float [https://docs.python.org/3/library/functions.html#float]) – Target recall. Only applicable if binary_classifier_model_selection_criteria is
precision_at_target_recall.


	target_precision (float [https://docs.python.org/3/library/functions.html#float]) – Target precision. Only applicable if binary_classifier_model_selection_criteria
is recall_at_target_precision.


	positive_example_weight_mult (float [https://docs.python.org/3/library/functions.html#float]) – The importance weight of positive examples is multiplied by this
constant. Useful for skewed datasets. Only applies for classification tasks.


	epochs (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of passes to make over the training data.


	use_bias (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include a bias field


	num_models (int [https://docs.python.org/3/library/functions.html#int]) – Number of models to train in parallel. If not set, the number of parallel models to
train will be decided by the algorithm itself. One model will be trained according to the given training


	parameter (regularization, optimizer, loss) – 


	num_calibration_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of observations to use from validation dataset for doing model


	calibration (finding the best threshold) – 


	init_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Function to use to set the initial model weights. One of “uniform” or “normal”


	init_scale (float [https://docs.python.org/3/library/functions.html#float]) – For “uniform” init, the range of values.


	init_sigma (float [https://docs.python.org/3/library/functions.html#float]) – For “normal” init, the standard-deviation.


	init_bias (float [https://docs.python.org/3/library/functions.html#float]) – Initial weight for bias term


	optimizer (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of ‘sgd’, ‘adam’, ‘rmsprop’ or ‘auto’


	loss (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of  ‘logistic’, ‘squared_loss’, ‘absolute_loss’, ‘hinge_loss’,


	'eps_insensitive_absolute_loss', 'quantile_loss', 'huber_loss' or ('eps_insensitive_squared_loss',) – 


	or 'auto'. ('softmax_loss') – 


	wd (float [https://docs.python.org/3/library/functions.html#float]) – L2 regularization parameter i.e. the weight decay parameter. Use 0 for no L2 regularization.


	l1 (float [https://docs.python.org/3/library/functions.html#float]) – L1 regularization parameter. Use 0 for no L1 regularization.


	momentum (float [https://docs.python.org/3/library/functions.html#float]) – Momentum parameter of sgd optimizer.


	learning_rate (float [https://docs.python.org/3/library/functions.html#float]) – The SGD learning rate


	beta_1 (float [https://docs.python.org/3/library/functions.html#float]) – Exponential decay rate for first moment estimates. Only applies for adam optimizer.


	beta_2 (float [https://docs.python.org/3/library/functions.html#float]) – Exponential decay rate for second moment estimates. Only applies for adam optimizer.


	bias_lr_mult (float [https://docs.python.org/3/library/functions.html#float]) – Allows different learning rate for the bias term. The actual learning rate for the


	is learning rate times bias_lr_mult. (bias) – 


	bias_wd_mult (float [https://docs.python.org/3/library/functions.html#float]) – Allows different regularization for the bias term. The actual L2 regularization weight


	the bias is wd times bias_wd_mult. By default there is no regularization on the bias term. (for) – 


	use_lr_scheduler (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, we use a scheduler for the learning rate.


	lr_scheduler_step (int [https://docs.python.org/3/library/functions.html#int]) – The number of steps between decreases of the learning rate. Only applies to
learning rate scheduler.


	lr_scheduler_factor (float [https://docs.python.org/3/library/functions.html#float]) – Every lr_scheduler_step the learning rate will decrease by this quantity.
Only applies for learning rate scheduler.


	lr_scheduler_minimum_lr (float [https://docs.python.org/3/library/functions.html#float]) – The learning rate will never decrease to a value lower than this.


	lr_scheduler_minimum_lr – Only applies for learning rate scheduler.


	normalize_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Normalizes the features before training to have standard deviation of 1.0.


	normalize_label (bool [https://docs.python.org/3/library/functions.html#bool]) – Normalizes the regression label to have a standard deviation of 1.0.
If set for classification, it will be ignored.


	unbias_data (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, features are modified to have mean 0.0.


	ubias_label (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, labels are modified to have mean 0.0.


	num_point_for_scaler (int [https://docs.python.org/3/library/functions.html#int]) – The number of data points to use for calculating the normalizing  and
unbiasing terms.


	margin (float [https://docs.python.org/3/library/functions.html#float]) – the margin for hinge_loss.


	quantile (float [https://docs.python.org/3/library/functions.html#float]) – Quantile for quantile loss. For quantile q, the model will attempt to produce


	such that true_label < prediction with probability q. (predictions) – 


	loss_insensitivity (float [https://docs.python.org/3/library/functions.html#float]) – Parameter for epsilon insensitive loss type. During training and metric


	any error smaller than this is considered to be zero. (evaluation,) – 


	huber_delta (float [https://docs.python.org/3/library/functions.html#float]) – Parameter for Huber loss. During training and metric evaluation, compute L2 loss for


	smaller than delta and L1 loss for errors larger than delta. (errors) – 


	early_stopping_patience (int [https://docs.python.org/3/library/functions.html#int]) – the number of epochs to wait before ending training if no improvement is


	The improvement is training loss if validation data is not provided, or else it is the validation (made.) – 


	or the binary classification model selection criteria like accuracy, f1-score etc. To disable early (loss) – 


	set early_stopping_patience to a value larger than epochs. (stopping,) – 


	early_stopping_tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance to measure an improvement in loss. If the ratio of


	improvement in loss divided by the previous best loss is smaller than this value, early stopping will (the) – 


	the improvement to be zero. (consider) – 


	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes for the response variable. Required when predictor_type is


	and ignored otherwise. The classes are assumed to be labeled 0, .., num_classes - 1. (multiclass_classifier) – 


	accuracy_top_k (int [https://docs.python.org/3/library/functions.html#int]) – The value of k when computing the Top K Accuracy metric for multiclass


	An example is scored as correct if the model assigns one of the top k scores to the true (classification.) – 


	label. – 


	f_beta (float [https://docs.python.org/3/library/functions.html#float]) – The value of beta to use when calculating F score metrics for binary or multiclass


	Also used if binary_classifier_model_selection_criteria is f_beta. (classification.) – 


	balance_multiclass_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use class weights which give each class equal importance in


	loss function. Only used when predictor_type is multiclass_classifier. (the) – 


	**kwargs – base class keyword argument values.









	
repo_name = 'linear-learner'

	




	
repo_version = 1

	




	
DEFAULT_MINI_BATCH_SIZE = 1000

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
normalize_data

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
normalize_label

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
unbias_data

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
unbias_label

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
num_point_for_scaler

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
margin

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
quantile

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
loss_insensitivity

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
huber_delta

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
early_stopping_patience

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
early_stopping_tolerance

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
num_classes

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
accuracy_top_k

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
f_beta

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
balance_multiclass_weights

	An algorithm hyperparameter with optional validation. Implemented as a python
descriptor object.






	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a LinearLearnerModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.














	
class sagemaker.LinearLearnerModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference LinearLearner s3 model data. Calling deploy() creates an Endpoint
and returns a LinearLearnerPredictor






	
class sagemaker.LinearLearnerPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Performs binary-classification or regression prediction from input vectors.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The prediction is stored in the "predicted_label"
key of the Record.label field.









          

      

      

    

  

    
      
          
            
  
NTM

The Amazon SageMaker NTM algorithm.


	
class sagemaker.NTM(role, train_instance_count, train_instance_type, num_topics, encoder_layers=None, epochs=None, encoder_layers_activation=None, optimizer=None, tolerance=None, num_patience_epochs=None, batch_norm=None, rescale_gradient=None, clip_gradient=None, weight_decay=None, learning_rate=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

Neural Topic Model (NTM) is Estimator used for unsupervised learning.

This Estimator may be fit via calls to
fit(). It requires Amazon
Record protobuf serialized data to be stored in S3.
There is an utility record_set() that
can be used to upload data to S3 and creates RecordSet to be passed
to the fit call.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a NTMPredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.

NTM Estimators can be configured by setting hyperparameters. The available hyperparameters for
NTM are documented below.

For further information on the AWS NTM algorithm,
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/ntm.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	num_topics (int [https://docs.python.org/3/library/functions.html#int]) – Required. The number of topics for NTM to find within the data.


	encoder_layers (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional. Represents number of layers in the encoder and the output size of
each layer.


	epochs (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Maximum number of passes over the training data.


	encoder_layers_activation (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Activation function to use in the encoder layers.


	optimizer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Optimizer to use for training.


	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Maximum relative change in the loss function within the last
num_patience_epochs number of epochs below which early stopping is triggered.


	num_patience_epochs (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Number of successive epochs over which early stopping criterion
is evaluated.


	batch_norm (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional. Whether to use batch normalization during training.


	rescale_gradient (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Rescale factor for gradient.


	clip_gradient (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Maximum magnitude for each gradient component.


	weight_decay (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Weight decay coefficient. Adds L2 regularization.


	learning_rate (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Learning rate for the optimizer.


	**kwargs – base class keyword argument values.









	
repo_name = 'ntm'

	




	
repo_version = 1

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a NTMModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.














	
class sagemaker.NTMModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference NTM s3 model data. Calling deploy() creates an Endpoint and return
a Predictor that transforms vectors to a lower-dimensional representation.






	
class sagemaker.NTMPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Transforms input vectors to lower-dimesional representations.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The lower dimension vector result is stored in the projection
key of the Record.label field.









          

      

      

    

  

    
      
          
            
  
Object2Vec

The Amazon SageMaker Object2Vec algorithm.


	
class sagemaker.Object2Vec(role, train_instance_count, train_instance_type, epochs, enc0_max_seq_len, enc0_vocab_size, enc_dim=None, mini_batch_size=None, early_stopping_patience=None, early_stopping_tolerance=None, dropout=None, weight_decay=None, bucket_width=None, num_classes=None, mlp_layers=None, mlp_dim=None, mlp_activation=None, output_layer=None, optimizer=None, learning_rate=None, enc0_network=None, enc1_network=None, enc0_cnn_filter_width=None, enc1_cnn_filter_width=None, enc1_max_seq_len=None, enc0_token_embedding_dim=None, enc1_token_embedding_dim=None, enc1_vocab_size=None, enc0_layers=None, enc1_layers=None, enc0_freeze_pretrained_embedding=None, enc1_freeze_pretrained_embedding=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

Object2Vec is Estimator used for anomaly detection.

This Estimator may be fit via calls to
fit().
There is an utility record_set() that
can be used to upload data to S3 and creates RecordSet to be passed
to the fit call.

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an
Endpoint, deploy returns a RealTimePredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.

Object2Vec Estimators can be configured by setting hyperparameters. The available hyperparameters for
Object2Vec are documented below.

For further information on the AWS Object2Vec algorithm,
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/object2vec.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	epochs (int [https://docs.python.org/3/library/functions.html#int]) – Total number of epochs for SGD training


	enc0_max_seq_len (int [https://docs.python.org/3/library/functions.html#int]) – Maximum sequence length


	enc0_vocab_size (int [https://docs.python.org/3/library/functions.html#int]) – Vocabulary size of tokens


	enc_dim (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Dimension of the output of the embedding layer


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Optional. mini batch size for SGD training


	early_stopping_patience (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The allowed number of consecutive epochs without improvement
before early stopping is applied


	early_stopping_tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Optional. The value used to determine whether the algorithm has made
improvement between two consecutive epochs for early stopping


	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Dropout probability on network layers


	weight_decay (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Weight decay parameter during optimization


	bucket_width (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The allowed difference between data sequence length when bucketing is enabled


	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Number of classes for classification training (ignored for regression problems)


	mlp_layers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Number of MLP layers in the network


	mlp_dim (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Dimension of the output of MLP layer


	mlp_activation (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Type of activation function for the MLP layer


	output_layer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Type of output layer


	optimizer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Type of optimizer for training


	learning_rate (float [https://docs.python.org/3/library/functions.html#float]) – Optional. Learning rate for SGD training


	enc0_network (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Network model of encoder “enc0”


	enc1_network (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Network model of encoder “enc1”


	enc0_cnn_filter_width (int [https://docs.python.org/3/library/functions.html#int]) – Optional. CNN filter width


	enc1_cnn_filter_width (int [https://docs.python.org/3/library/functions.html#int]) – Optional. CNN filter width


	enc1_max_seq_len (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Maximum sequence length


	enc0_token_embedding_dim (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Output dimension of token embedding layer


	enc1_token_embedding_dim (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Output dimension of token embedding layer


	enc1_vocab_size (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Vocabulary size of tokens


	enc0_layers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Number of layers in encoder


	enc1_layers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. Number of layers in encoder


	enc0_freeze_pretrained_embedding (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional. Freeze pretrained embedding weights


	enc1_freeze_pretrained_embedding (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional. Freeze pretrained embedding weights


	**kwargs – base class keyword argument values.









	
repo_name = 'object2vec'

	




	
repo_version = 1

	




	
MINI_BATCH_SIZE = 32

	




	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).













	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a Object2VecModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.














	
class sagemaker.Object2VecModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference Object2Vec s3 model data. Calling deploy() creates an
Endpoint and returns a Predictor that calculates anomaly scores for datapoints.









          

      

      

    

  

    
      
          
            
  
PCA

The Amazon SageMaker PCA algorithm.


	
class sagemaker.PCA(role, train_instance_count, train_instance_type, num_components, algorithm_mode=None, subtract_mean=None, extra_components=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

A Principal Components Analysis (PCA) AmazonAlgorithmEstimatorBase.

This Estimator may be fit via calls to
fit_ndarray()
or fit(). The former allows a PCA model
to be fit on a 2-dimensional numpy array. The latter requires Amazon
Record protobuf serialized data to be stored in S3.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an Endpoint,
deploy returns a PCAPredictor object that can be used to project
input vectors to the learned lower-dimensional representation, using the trained PCA model hosted in the
SageMaker Endpoint.

PCA Estimators can be configured by setting hyperparameters. The available hyperparameters for PCA
are documented below. For further information on the AWS PCA algorithm, please consult AWS technical
documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/pca.html

This Estimator uses Amazon SageMaker PCA to perform training and host deployed models. To
learn more about Amazon SageMaker PCA, please read:
https://docs.aws.amazon.com/sagemaker/latest/dg/how-pca-works.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	num_components (int [https://docs.python.org/3/library/functions.html#int]) – The number of principal components. Must be greater than zero.


	algorithm_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mode for computing the principal components. One of ‘regular’ or
‘randomized’.


	subtract_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the data should be unbiased both during train and at inference.


	extra_components (int [https://docs.python.org/3/library/functions.html#int]) – As the value grows larger, the solution becomes more accurate but the
runtime and memory consumption increase linearly. If this value is unset or set to -1,
then a default value equal to the maximum of 10 and num_components will be used.
Valid for randomized mode only.


	**kwargs – base class keyword argument values.









	
repo_name = 'pca'

	




	
repo_version = 1

	




	
DEFAULT_MINI_BATCH_SIZE = 500

	




	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a PCAModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.










	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).

















	
class sagemaker.PCAModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference PCA s3 model data. Calling deploy() creates an Endpoint and return
a Predictor that transforms vectors to a lower-dimensional representation.






	
class sagemaker.PCAPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Transforms input vectors to lower-dimesional representations.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects, one
for each row in the input ndarray. The lower dimension vector result is stored in the projection
key of the Record.label field.









          

      

      

    

  

    
      
          
            
  
Random Cut Forest

The Amazon SageMaker Random Cut Forest algorithm.


	
class sagemaker.RandomCutForest(role, train_instance_count, train_instance_type, num_samples_per_tree=None, num_trees=None, eval_metrics=None, **kwargs)

	Bases: sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase

RandomCutForest is Estimator used for anomaly detection.

This Estimator may be fit via calls to
fit(). It requires Amazon
Record protobuf serialized data to be stored in S3.
There is an utility record_set() that
can be used to upload data to S3 and creates RecordSet to be passed
to the fit call.

To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please
consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker
Endpoint by invoking deploy(). As well as deploying an
Endpoint, deploy returns a RandomCutForestPredictor object that can be used
for inference calls using the trained model hosted in the SageMaker Endpoint.

RandomCutForest Estimators can be configured by setting hyperparameters. The available hyperparameters for
RandomCutForest are documented below.

For further information on the AWS Random Cut Forest algorithm,
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html


	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and
APIs that create Amazon SageMaker endpoints use this role to access
training data and model artifacts. After the endpoint is created,
the inference code might use the IAM role, if accessing AWS resource.


	train_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of Amazon EC2 instances to use for training.


	train_instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use for training, for example, ‘ml.c4.xlarge’.


	num_samples_per_tree (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of samples used to build each tree in the forest.
The total number of samples drawn from the train dataset is num_trees * num_samples_per_tree.


	num_trees (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of trees used in the forest.


	eval_metrics (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional. JSON list of metrics types to be used for reporting the score for the model.
Allowed values are “accuracy”, “precision_recall_fscore”: positive and negative precision, recall,
and f1 scores. If test data is provided, the score shall be reported in terms of all requested metrics.


	**kwargs – base class keyword argument values.









	
repo_name = 'randomcutforest'

	




	
repo_version = 1

	




	
create_model(vpc_config_override='VPC_CONFIG_DEFAULT')

	Return a RandomCutForestModel referencing the latest
s3 model data produced by this Estimator.


	Parameters

	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.










	
classmethod attach(training_job_name, sagemaker_session=None, model_channel_name='model')

	Attach to an existing training job.

Create an Estimator bound to an existing training job, each subclass is responsible to implement
_prepare_init_params_from_job_description() as this method delegates the actual conversion of a training
job description to the arguments that the class constructor expects. After attaching, if the training job has a
Complete status, it can be deploy() ed to create a SageMaker Endpoint and return a Predictor.

If the training job is in progress, attach will block and display log messages
from the training job, until the training job completes.


	Parameters

	
	training_job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the training job to attach to.


	sagemaker_session (sagemaker.session.Session) – Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.


	model_channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel where pre-trained model data will be downloaded (default:
‘model’). If no channel with the same name exists in the training job, this option will be ignored.








Examples

>>> my_estimator.fit(wait=False)
>>> training_job_name = my_estimator.latest_training_job.name
Later on:
>>> attached_estimator = Estimator.attach(training_job_name)
>>> attached_estimator.deploy()






	Returns

	Instance of the calling Estimator Class with the attached training job.










	
compile_model(target_instance_family, input_shape, output_path, framework=None, framework_version=None, compile_max_run=300, tags=None, **kwargs)

	Compile a Neo model using the input model.


	Parameters

	
	target_instance_family (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the device that you want to run your model after compilation, for
example: ml_c5. Allowed strings are: ml_c5, ml_m5, ml_c4, ml_m4, jetsontx1, jetsontx2, ml_p2, ml_p3,
deeplens, rasp3b


	input_shape (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the name and shape of the expected inputs for your trained model in json
dictionary form, for example: {‘data’:[1,3,1024,1024]}, or {‘var1’: [1,1,28,28], ‘var2’:[1,1,28,28]}


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies where to store the compiled model


	framework (str [https://docs.python.org/3/library/stdtypes.html#str]) – The framework that is used to train the original model. Allowed values: ‘mxnet’,
‘tensorflow’, ‘pytorch’, ‘onnx’, ‘xgboost’


	framework_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the framework


	compile_max_run (int [https://docs.python.org/3/library/functions.html#int]) – Timeout in seconds for compilation (default: 3 * 60).
After this amount of time Amazon SageMaker Neo terminates the compilation job regardless of its
current status.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a compilation job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	A SageMaker Model object. See Model() for full details.



	Return type

	sagemaker.model.Model










	
data_location

	




	
delete_endpoint()

	Delete an Amazon SageMaker Endpoint.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the endpoint does not exist.










	
deploy(initial_instance_count, instance_type, accelerator_type=None, endpoint_name=None, use_compiled_model=False, **kwargs)

	Deploy the trained model to an Amazon SageMaker endpoint and return a sagemaker.RealTimePredictor object.

More information:
http://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html


	Parameters

	
	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	accelerator_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of Elastic Inference accelerator to attach to an endpoint for model loading
and inference, for example, ‘ml.eia1.medium’. If not specified, no Elastic Inference accelerator
will be attached to the endpoint.
For more information: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the training job is used.


	use_compiled_model (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to select whether to use compiled (optimized) model. Default: False.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	
	A predictor that provides a predict() method,

	which can be used to send requests to the Amazon SageMaker endpoint and obtain inferences.









	Return type

	sagemaker.predictor.RealTimePredictor










	
enable_network_isolation()

	Return True if this Estimator will need network isolation to run.


	Returns

	Whether this Estimator needs network isolation or not.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fit(records, mini_batch_size=None, wait=True, logs=True, job_name=None)

	Fit this Estimator on serialized Record objects, stored in S3.

records should be an instance of RecordSet. This defines a collection of
S3 data files to train this Estimator on.

Training data is expected to be encoded as dense or sparse vectors in the “values” feature
on each Record. If the data is labeled, the label is expected to be encoded as a list of
scalas in the “values” feature of the Record label.

More information on the Amazon Record format is available at:
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

See record_set() to construct a RecordSet object
from ndarray arrays.


	Parameters

	
	records (RecordSet) – The records to train this Estimator on


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The size of each mini-batch to use when training. If None, a
default value will be used.


	wait (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the call should wait until the job completes (default: True).


	logs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the logs produced by the job.
Only meaningful when wait is True (default: True).


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Training job name. If not specified, the estimator generates a default job name,
based on the training image name and current timestamp.













	
get_vpc_config(vpc_config_override='VPC_CONFIG_DEFAULT')

	Returns VpcConfig dict either from this Estimator’s subnets and security groups,
or else validate and return an optional override value.






	
hyperparameters()

	Return the hyperparameters as a dictionary to use for training.

The  fit() method, which trains the model, calls this method to
find the hyperparameters.


	Returns

	The hyperparameters.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]










	
model_data

	The model location in S3. Only set if Estimator has been fit().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
record_set(train, labels=None, channel='train')

	Build a RecordSet from a numpy ndarray matrix and label vector.

For the 2D ndarray train, each row is converted to a Record object.
The vector is stored in the “values” entry of the features property of each Record.
If labels is not None, each corresponding label is assigned to the “values” entry
of the labels property of each Record.

The collection of Record objects are protobuf serialized and uploaded to new
S3 locations. A manifest file is generated containing the list of objects created and
also stored in S3.

The number of S3 objects created is controlled by the train_instance_count property
on this Estimator. One S3 object is created per training instance.


	Parameters

	
	train (numpy.ndarray) – A 2D numpy array of training data.


	labels (numpy.ndarray) – A 1D numpy array of labels. Its length must be equal to the
number of rows in train.


	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SageMaker TrainingJob channel this RecordSet should be assigned to.






	Returns

	A RecordSet referencing the encoded, uploading training and label data.



	Return type

	RecordSet










	
train_image()

	Return the Docker image to use for training.

The  fit() method, which does the model training, calls this method to
find the image to use for model training.


	Returns

	The URI of the Docker image.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
training_job_analytics

	Return a TrainingJobAnalytics object for the current training job.






	
transformer(instance_count, instance_type, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None)

	Return a Transformer that uses a SageMaker Model based on the training job. It reuses the
SageMaker Session and base job name used by the Estimator.


	Parameters

	
	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).

















	
class sagemaker.RandomCutForestModel(model_data, role, sagemaker_session=None, **kwargs)

	Bases: sagemaker.model.Model

Reference RandomCutForest s3 model data. Calling deploy() creates an
Endpoint and returns a Predictor that calculates anomaly scores for datapoints.






	
class sagemaker.RandomCutForestPredictor(endpoint, sagemaker_session=None)

	Bases: sagemaker.predictor.RealTimePredictor

Assigns an anomaly score to each of the datapoints provided.

The implementation of predict() in this
RealTimePredictor requires a numpy ndarray as input. The array should contain the
same number of columns as the feature-dimension of the data used to fit the model this
Predictor performs inference on.

predict() returns a list of Record objects,
one for each row in the input. Each row’s score is stored in the key score of the
Record.label field.









          

      

      

    

  

    
      
          
            
  
Airflow


training_config


	
sagemaker.workflow.airflow.training_config(estimator, inputs=None, job_name=None, mini_batch_size=None)

	Export Airflow training config from an estimator


	Parameters

	
	estimator (sagemaker.estimator.EstimatorBase) – The estimator to export training config from. Can be a BYO estimator,
Framework estimator or Amazon algorithm estimator.


	inputs – 
	Information about the training data. Please refer to the fit() method of

	the associated estimator, as this can take any of the following forms:






	(str) - The S3 location where training data is saved.


	
	(dict[str, str] or dict[str, sagemaker.session.s3_input]) - If using multiple channels for

	training data, you can specify a dict mapping channel names
to strings or s3_input() objects.







	
	(sagemaker.session.s3_input) - Channel configuration for S3 data sources that can provide

	additional information about the training dataset. See sagemaker.session.s3_input()
for full details.







	
	(sagemaker.amazon.amazon_estimator.RecordSet) - A collection of

	Amazon :class:~`Record` objects serialized and stored in S3.
For use with an estimator for an Amazon algorithm.







	
	(list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of

	:class:~`sagemaker.amazon.amazon_estimator.RecordSet` objects, where each instance is
a different channel of training data.












	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specify a training job name if needed.


	mini_batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Specify this argument only when estimator is a built-in estimator of an
Amazon algorithm. For other estimators, batch size should be specified in the estimator.






	Returns

	Training config that can be directly used by SageMakerTrainingOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












tuning_config


	
sagemaker.workflow.airflow.tuning_config(tuner, inputs, job_name=None)

	Export Airflow tuning config from an estimator


	Parameters

	
	tuner (sagemaker.tuner.HyperparameterTuner) – The tuner to export tuning config from.


	inputs – 
	Information about the training data. Please refer to the fit() method of

	the associated estimator in the tuner, as this can take any of the following forms:






	(str) - The S3 location where training data is saved.


	
	(dict[str, str] or dict[str, sagemaker.session.s3_input]) - If using multiple channels for

	training data, you can specify a dict mapping channel names
to strings or s3_input() objects.







	
	(sagemaker.session.s3_input) - Channel configuration for S3 data sources that can provide

	additional information about the training dataset. See sagemaker.session.s3_input()
for full details.







	
	(sagemaker.amazon.amazon_estimator.RecordSet) - A collection of

	Amazon :class:~`Record` objects serialized and stored in S3.
For use with an estimator for an Amazon algorithm.







	
	(list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of

	:class:~`sagemaker.amazon.amazon_estimator.RecordSet` objects, where each instance is
a different channel of training data.












	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specify a tuning job name if needed.






	Returns

	Tuning config that can be directly used by SageMakerTuningOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












model_config


	
sagemaker.workflow.airflow.model_config(instance_type, model, role=None, image=None)

	Export Airflow model config from a SageMaker model


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’


	model (sagemaker.model.FrameworkModel) – The SageMaker model to export Airflow config from


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the model


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – An container image to use for deploying the model






	Returns

	Model config that can be directly used by SageMakerModelOperator in Airflow. It can also be part
of the config used by SageMakerEndpointOperator and SageMakerTransformOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












model_config_from_estimator


	
sagemaker.workflow.airflow.model_config_from_estimator(instance_type, estimator, task_id, task_type, role=None, image=None, name=None, model_server_workers=None, vpc_config_override='VPC_CONFIG_DEFAULT')

	Export Airflow model config from a SageMaker estimator


	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’


	estimator (sagemaker.model.EstimatorBase) – The SageMaker estimator to export Airflow config from.
It has to be an estimator associated with a training job.


	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The task id of any airflow.contrib.operators.SageMakerTrainingOperator or
airflow.contrib.operators.SageMakerTuningOperator that generates training jobs in the DAG. The model config
is built based on the training job generated in this operator.


	task_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Whether the task is from SageMakerTrainingOperator or SageMakerTuningOperator. Values can be
‘training’, ‘tuning’ or None (which means training job is not from any task).


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the model


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – An container image to use for deploying the model


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the model


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – The number of worker processes used by the inference server.
If None, server will use one worker per vCPU. Only effective when estimator is a
SageMaker framework.


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.






	Returns

	Model config that can be directly used by SageMakerModelOperator in Airflow. It can also be part
of the config used by SageMakerEndpointOperator.


SageMakerTransformOperator in Airflow.








	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












transform_config


	
sagemaker.workflow.airflow.transform_config(transformer, data, data_type='S3Prefix', content_type=None, compression_type=None, split_type=None, job_name=None)

	Export Airflow transform config from a SageMaker transformer


	Parameters

	
	transformer (sagemaker.transformer.Transformer) – The SageMaker transformer to export Airflow
config from.


	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input data location in S3.


	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – What the S3 location defines (default: ‘S3Prefix’). Valid values:


	
	’S3Prefix’ - the S3 URI defines a key name prefix. All objects with this prefix will be used as

	inputs for the transform job.







	
	’ManifestFile’ - the S3 URI points to a single manifest file listing each S3 object to use as

	an input for the transform job.












	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – MIME type of the input data (default: None).


	compression_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Compression type of the input data, if compressed (default: None).
Valid values: ‘Gzip’, None.


	split_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record delimiter for the input object (default: ‘None’).
Valid values: ‘None’, ‘Line’, ‘RecordIO’, and ‘TFRecord’.


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – job name (default: None). If not specified, one will be generated.






	Returns

	Transform config that can be directly used by SageMakerTransformOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












transform_config_from_estimator


	
sagemaker.workflow.airflow.transform_config_from_estimator(estimator, task_id, task_type, instance_count, instance_type, data, data_type='S3Prefix', content_type=None, compression_type=None, split_type=None, job_name=None, model_name=None, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None, model_server_workers=None, image=None, vpc_config_override=None)

	Export Airflow transform config from a SageMaker estimator


	Parameters

	
	estimator (sagemaker.model.EstimatorBase) – The SageMaker estimator to export Airflow config from.
It has to be an estimator associated with a training job.


	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The task id of any airflow.contrib.operators.SageMakerTrainingOperator or
airflow.contrib.operators.SageMakerTuningOperator that generates training jobs in the DAG. The transform
config is built based on the training job generated in this operator.


	task_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Whether the task is from SageMakerTrainingOperator or SageMakerTuningOperator. Values can be
‘training’, ‘tuning’ or None (which means training job is not from any task).


	instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Number of EC2 instances to use.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to use, for example, ‘ml.c4.xlarge’.


	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input data location in S3.


	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – What the S3 location defines (default: ‘S3Prefix’). Valid values:


	
	’S3Prefix’ - the S3 URI defines a key name prefix. All objects with this prefix will be used as

	inputs for the transform job.







	
	’ManifestFile’ - the S3 URI points to a single manifest file listing each S3 object to use as

	an input for the transform job.












	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – MIME type of the input data (default: None).


	compression_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Compression type of the input data, if compressed (default: None).
Valid values: ‘Gzip’, None.


	split_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record delimiter for the input object (default: ‘None’).
Valid values: ‘None’, ‘Line’, ‘RecordIO’, and ‘TFRecord’.


	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – transform job name (default: None). If not specified, one will be generated.


	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – model name (default: None). If not specified, one will be generated.


	strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The strategy used to decide how to batch records in a single request (default: None).
Valid values: ‘MULTI_RECORD’ and ‘SINGLE_RECORD’.


	assemble_with (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the output is assembled (default: None). Valid values: ‘Line’ or ‘None’.


	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – S3 location for saving the transform result. If not specified, results are stored to
a default bucket.


	output_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the transform output (default: None).


	accept (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content type accepted by the endpoint deployed during the transform job.


	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Environment variables to be set for use during the transform job (default: None).


	max_concurrent_transforms (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of HTTP requests to be made to
each individual transform container at one time.


	max_payload (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the payload in a single HTTP request to the container in MB.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a transform job. If none specified, then the tags used for
the training job are used for the transform job.


	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ExecutionRoleArn IAM Role ARN for the Model, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.


	volume_kms_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. KMS key ID for encrypting the volume attached to the ML
compute instance (default: None).


	model_server_workers (int [https://docs.python.org/3/library/functions.html#int]) – Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.


	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – An container image to use for deploying the model


	vpc_config_override (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* ‘Subnets’ (list[str]): List of subnet ids.
* ‘SecurityGroupIds’ (list[str]): List of security group ids.






	Returns

	Transform config that can be directly used by SageMakerTransformOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












deploy_config


	
sagemaker.workflow.airflow.deploy_config(model, initial_instance_count, instance_type, endpoint_name=None, tags=None)

	Export Airflow deploy config from a SageMaker model


	Parameters

	
	model (sagemaker.model.Model) – The SageMaker model to export the Airflow config from.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The EC2 instance type to deploy this Model to. For example, ‘ml.p2.xlarge’.


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – The initial number of instances to run in the
Endpoint created from this Model.


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the endpoint to create (default: None).
If not specified, a unique endpoint name will be created.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a training job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.






	Returns

	Deploy config that can be directly used by SageMakerEndpointOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]












deploy_config_from_estimator


	
sagemaker.workflow.airflow.deploy_config_from_estimator(estimator, task_id, task_type, initial_instance_count, instance_type, model_name=None, endpoint_name=None, tags=None, **kwargs)

	Export Airflow deploy config from a SageMaker estimator


	Parameters

	
	estimator (sagemaker.model.EstimatorBase) – The SageMaker estimator to export Airflow config from.
It has to be an estimator associated with a training job.


	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The task id of any airflow.contrib.operators.SageMakerTrainingOperator or
airflow.contrib.operators.SageMakerTuningOperator that generates training jobs in the DAG. The endpoint
config is built based on the training job generated in this operator.


	task_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Whether the task is from SageMakerTrainingOperator or SageMakerTuningOperator. Values can be
‘training’, ‘tuning’ or None (which means training job is not from any task).


	initial_instance_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of EC2 instances to deploy to an endpoint for prediction.


	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of EC2 instance to deploy to an endpoint for prediction,
for example, ‘ml.c4.xlarge’.


	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker model. If not specified, one will be generated.


	endpoint_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to use for creating an Amazon SageMaker endpoint. If not specified, the name of
the SageMaker model is used.


	tags (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of tags for labeling a training job. For more, see
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.


	**kwargs – Passed to invocation of create_model(). Implementations may customize
create_model() to accept **kwargs to customize model creation during deploy.
For more, see the implementation docs.






	Returns

	Deploy config that can be directly used by SageMakerEndpointOperator in Airflow.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   s
   


   
     		 	

     		
       s	

     
       	[image: -]
       	
       sagemaker	
       

     
       	
       	   
       sagemaker.session	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 


A


  	
      	accuracy_top_k (sagemaker.LinearLearner attribute)


      	AmazonAlgorithmEstimatorBase (class in sagemaker.amazon.amazon_estimator)


      	analytics() (sagemaker.tuner.HyperparameterTuner method)


      	AnalyticsMetricsBase (class in sagemaker.analytics)


      	as_json_range() (sagemaker.tuner.CategoricalParameter method)


      	as_tuning_range() (sagemaker.tuner.CategoricalParameter method)


      	attach() (sagemaker.estimator.Estimator class method)

      
        	(sagemaker.FactorizationMachines class method)


        	(sagemaker.IPInsights class method)


        	(sagemaker.KMeans class method)


        	(sagemaker.KNN class method)


        	(sagemaker.LDA class method)


        	(sagemaker.LinearLearner class method)


        	(sagemaker.NTM class method)


        	(sagemaker.Object2Vec class method)


        	(sagemaker.PCA class method)


        	(sagemaker.RandomCutForest class method)


        	(sagemaker.estimator.EstimatorBase class method)


        	(sagemaker.estimator.Framework class method)


        	(sagemaker.transformer.Transformer class method)


        	(sagemaker.tuner.HyperparameterTuner class method)


      


  





B


  	
      	balance_multiclass_weights (sagemaker.LinearLearner attribute)


  

  	
      	best_training_job() (sagemaker.tuner.HyperparameterTuner method)


      	boto_region_name (sagemaker.session.Session attribute)


  





C


  	
      	cast_to_type() (sagemaker.tuner.CategoricalParameter class method)

      
        	(sagemaker.tuner.ContinuousParameter class method)


        	(sagemaker.tuner.IntegerParameter class method)


      


      	CategoricalParameter (class in sagemaker.tuner)


      	Chainer (class in sagemaker.chainer.estimator)


      	ChainerModel (class in sagemaker.chainer.model)


      	ChainerPredictor (class in sagemaker.chainer.model)


      	classify() (sagemaker.tensorflow.serving.Predictor method)


      	clear_cache() (sagemaker.analytics.AnalyticsMetricsBase method)

      
        	(sagemaker.analytics.HyperparameterTuningJobAnalytics method)


        	(sagemaker.analytics.TrainingJobAnalytics method)


      


      	CLOUDWATCH_NAMESPACE (sagemaker.analytics.TrainingJobAnalytics attribute)


      	COACH_LATEST_VERSION (sagemaker.rl.estimator.RLEstimator attribute)


      	compile() (sagemaker.model.Model method)


      	compile_model() (sagemaker.estimator.Estimator method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.session.Session method)


      


  

  	
      	COMPLETE (sagemaker.session.LogState attribute)


      	config (sagemaker.session.s3_input attribute)


      	container_def() (in module sagemaker.session)


      	ContinuousParameter (class in sagemaker.tuner)


      	create_endpoint() (sagemaker.session.Session method)


      	create_endpoint_config() (sagemaker.session.Session method)


      	create_model() (sagemaker.chainer.estimator.Chainer method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.Estimator method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.mxnet.estimator.MXNet method)


        	(sagemaker.pytorch.estimator.PyTorch method)


        	(sagemaker.rl.estimator.RLEstimator method)


        	(sagemaker.session.Session method)


        	(sagemaker.sklearn.estimator.SKLearn method)


        	(sagemaker.tensorflow.estimator.TensorFlow method)


      


      	create_model_from_job() (sagemaker.session.Session method)


      	create_model_package_from_algorithm() (sagemaker.session.Session method)


  





D


  	
      	data_location (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase attribute)

      
        	(sagemaker.FactorizationMachines attribute)


        	(sagemaker.IPInsights attribute)


        	(sagemaker.KMeans attribute)


        	(sagemaker.KNN attribute)


        	(sagemaker.LDA attribute)


        	(sagemaker.LinearLearner attribute)


        	(sagemaker.NTM attribute)


        	(sagemaker.Object2Vec attribute)


        	(sagemaker.PCA attribute)


        	(sagemaker.RandomCutForest attribute)


      


      	dataframe() (sagemaker.analytics.AnalyticsMetricsBase method)


      	default_bucket() (sagemaker.session.Session method)


      	DEFAULT_ESTIMATOR_CLS_NAME (sagemaker.tuner.HyperparameterTuner attribute)


      	DEFAULT_ESTIMATOR_MODULE (sagemaker.tuner.HyperparameterTuner attribute)


      	default_metric_definitions() (sagemaker.rl.estimator.RLEstimator class method)


      	DEFAULT_MINI_BATCH_SIZE (sagemaker.LinearLearner attribute)

      
        	(sagemaker.PCA attribute)


      


      	delete_endpoint() (sagemaker.estimator.Estimator method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.predictor.RealTimePredictor method)


        	(sagemaker.session.Session method)


        	(sagemaker.tuner.HyperparameterTuner method)


      


  

  	
      	deploy() (sagemaker.estimator.Estimator method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.model.Model method)


        	(sagemaker.pipeline.PipelineModel method)


        	(sagemaker.tuner.HyperparameterTuner method)


      


      	deploy_config() (in module sagemaker.workflow.airflow)


      	deploy_config_from_estimator() (in module sagemaker.workflow.airflow)


      	description() (sagemaker.analytics.HyperparameterTuningJobAnalytics method)


  





E


  	
      	early_stopping_patience (sagemaker.LinearLearner attribute)


      	early_stopping_tolerance (sagemaker.LinearLearner attribute)


      	enable_network_isolation() (sagemaker.estimator.Estimator method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.model.Model method)


      


  

  	
      	endpoint_from_job() (sagemaker.session.Session method)


      	endpoint_from_model_data() (sagemaker.session.Session method)


      	endpoint_from_production_variants() (sagemaker.session.Session method)


      	env (sagemaker.session.ModelContainer attribute)


      	Estimator (class in sagemaker.estimator)


      	EstimatorBase (class in sagemaker.estimator)


      	eval_metrics (sagemaker.KMeans attribute)


      	expand_role() (sagemaker.session.Session method)


      	export_csv() (sagemaker.analytics.AnalyticsMetricsBase method)


  





F


  	
      	f_beta (sagemaker.LinearLearner attribute)


      	FactorizationMachines (class in sagemaker)


      	FactorizationMachinesModel (class in sagemaker)


      	FactorizationMachinesPredictor (class in sagemaker)


      	feature_dim (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase attribute)


      	fit() (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.Estimator method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.tensorflow.estimator.TensorFlow method)


        	(sagemaker.tuner.HyperparameterTuner method)


      


  

  	
      	Framework (class in sagemaker.estimator)


      	FRAMEWORK_NAME (sagemaker.tensorflow.serving.Model attribute)


  





G


  	
      	get_caller_identity_arn() (sagemaker.session.Session method)


      	get_execution_role() (in module sagemaker.session)


      	get_vpc_config() (sagemaker.estimator.Estimator method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


      


  





H


  	
      	huber_delta (sagemaker.LinearLearner attribute)


      	hyperparameter_ranges() (sagemaker.tuner.HyperparameterTuner method)


      	hyperparameters() (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.chainer.estimator.Chainer method)


        	(sagemaker.estimator.Estimator method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.rl.estimator.RLEstimator method)


        	(sagemaker.tensorflow.estimator.TensorFlow method)


      


  

  	
      	HyperparameterTuner (class in sagemaker.tuner)


      	HyperparameterTuningJobAnalytics (class in sagemaker.analytics)


  





I


  	
      	identical_dataset_and_algorithm_tuner() (sagemaker.tuner.HyperparameterTuner method)


      	image (sagemaker.session.ModelContainer attribute)


      	IntegerParameter (class in sagemaker.tuner)


  

  	
      	IPInsights (class in sagemaker)


      	IPInsightsModel (class in sagemaker)


      	IPInsightsPredictor (class in sagemaker)


      	is_valid() (sagemaker.tuner.CategoricalParameter method)


  





J


  	
      	JOB_COMPLETE (sagemaker.session.LogState attribute)


  





K


  	
      	KMeans (class in sagemaker)


      	KMeansModel (class in sagemaker)


      	KMeansPredictor (class in sagemaker)


  

  	
      	KNN (class in sagemaker)


      	KNNModel (class in sagemaker)


      	KNNPredictor (class in sagemaker)


  





L


  	
      	LATEST_VERSION (sagemaker.chainer.estimator.Chainer attribute)

      
        	(sagemaker.mxnet.estimator.MXNet attribute)


        	(sagemaker.pytorch.estimator.PyTorch attribute)


        	(sagemaker.tensorflow.estimator.TensorFlow attribute)


      


      	LAUNCH_MPI_ENV_NAME (sagemaker.estimator.Framework attribute)


      	LAUNCH_PS_ENV_NAME (sagemaker.estimator.Framework attribute)


      	LDA (class in sagemaker)


      	LDAModel (class in sagemaker)


  

  	
      	LDAPredictor (class in sagemaker)


      	LinearLearner (class in sagemaker)


      	LinearLearnerModel (class in sagemaker)


      	LinearLearnerPredictor (class in sagemaker)


      	LOG_LEVEL_MAP (sagemaker.tensorflow.serving.Model attribute)


      	LOG_LEVEL_PARAM_NAME (sagemaker.tensorflow.serving.Model attribute)


      	logs_for_job() (sagemaker.session.Session method)


      	LogState (class in sagemaker.session)


      	loss_insensitivity (sagemaker.LinearLearner attribute)


  





M


  	
      	margin (sagemaker.LinearLearner attribute)


      	mini_batch_size (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase attribute)


      	MINI_BATCH_SIZE (sagemaker.IPInsights attribute)

      
        	(sagemaker.Object2Vec attribute)


      


      	Model (class in sagemaker.model)

      
        	(class in sagemaker.tensorflow.serving)


      


      	model_config() (in module sagemaker.workflow.airflow)


      	model_config_from_estimator() (in module sagemaker.workflow.airflow)


      	model_data (sagemaker.estimator.Estimator attribute)

      
        	(sagemaker.FactorizationMachines attribute)


        	(sagemaker.IPInsights attribute)


        	(sagemaker.KMeans attribute)


        	(sagemaker.KNN attribute)


        	(sagemaker.LDA attribute)


        	(sagemaker.LinearLearner attribute)


        	(sagemaker.NTM attribute)


        	(sagemaker.Object2Vec attribute)


        	(sagemaker.PCA attribute)


        	(sagemaker.RandomCutForest attribute)


        	(sagemaker.estimator.EstimatorBase attribute)


        	(sagemaker.estimator.Framework attribute)


      


  

  	
      	ModelContainer (class in sagemaker.session)


      	MPI_CUSTOM_MPI_OPTIONS (sagemaker.estimator.Framework attribute)


      	MPI_NUM_PROCESSES_PER_HOST (sagemaker.estimator.Framework attribute)


      	MXNet (class in sagemaker.mxnet.estimator)


      	MXNetModel (class in sagemaker.mxnet.model)


      	MXNetPredictor (class in sagemaker.mxnet.model)


  





N


  	
      	name (sagemaker.analytics.HyperparameterTuningJobAnalytics attribute)

      
        	(sagemaker.analytics.TrainingJobAnalytics attribute)


      


      	normalize_data (sagemaker.LinearLearner attribute)


      	normalize_label (sagemaker.LinearLearner attribute)


  

  	
      	NTM (class in sagemaker)


      	NTMModel (class in sagemaker)


      	NTMPredictor (class in sagemaker)


      	num_classes (sagemaker.LinearLearner attribute)


      	num_point_for_scaler (sagemaker.LinearLearner attribute)


  





O


  	
      	Object2Vec (class in sagemaker)


  

  	
      	Object2VecModel (class in sagemaker)


  





P


  	
      	PCA (class in sagemaker)


      	PCAModel (class in sagemaker)


      	PCAPredictor (class in sagemaker)


      	pipeline_container_def() (in module sagemaker.session)

      
        	(sagemaker.pipeline.PipelineModel method)


      


      	PipelineModel (class in sagemaker.pipeline)


      	predict() (sagemaker.predictor.RealTimePredictor method)

      
        	(sagemaker.tensorflow.serving.Predictor method)


      


      	Predictor (class in sagemaker.tensorflow.serving)


      	prepare_container_def() (sagemaker.chainer.model.ChainerModel method)

      
        	(sagemaker.model.Model method)


        	(sagemaker.mxnet.model.MXNetModel method)


        	(sagemaker.pytorch.model.PyTorchModel method)


        	(sagemaker.sklearn.model.SKLearnModel method)


        	(sagemaker.tensorflow.model.TensorFlowModel method)


        	(sagemaker.tensorflow.serving.Model method)


      


  

  	
      	production_variant() (in module sagemaker.session)


      	PyTorch (class in sagemaker.pytorch.estimator)


      	PyTorchModel (class in sagemaker.pytorch.model)


      	PyTorchPredictor (class in sagemaker.pytorch.model)


  





Q


  	
      	quantile (sagemaker.LinearLearner attribute)


  





R


  	
      	RandomCutForest (class in sagemaker)


      	RandomCutForestModel (class in sagemaker)


      	RandomCutForestPredictor (class in sagemaker)


      	RAY_LATEST_VERSION (sagemaker.rl.estimator.RLEstimator attribute)


      	RealTimePredictor (class in sagemaker.predictor)


      	record_set() (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


      


      	regress() (sagemaker.tensorflow.serving.Predictor method)


      	repo_name (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase attribute)

      
        	(sagemaker.FactorizationMachines attribute)


        	(sagemaker.IPInsights attribute)


        	(sagemaker.KMeans attribute)


        	(sagemaker.KNN attribute)


        	(sagemaker.LDA attribute)


        	(sagemaker.LinearLearner attribute)


        	(sagemaker.NTM attribute)


        	(sagemaker.Object2Vec attribute)


        	(sagemaker.PCA attribute)


        	(sagemaker.RandomCutForest attribute)


      


  

  	
      	repo_version (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase attribute)

      
        	(sagemaker.FactorizationMachines attribute)


        	(sagemaker.IPInsights attribute)


        	(sagemaker.KMeans attribute)


        	(sagemaker.KNN attribute)


        	(sagemaker.LDA attribute)


        	(sagemaker.LinearLearner attribute)


        	(sagemaker.NTM attribute)


        	(sagemaker.Object2Vec attribute)


        	(sagemaker.PCA attribute)


        	(sagemaker.RandomCutForest attribute)


      


      	RLEstimator (class in sagemaker.rl.estimator)


  





S


  	
      	s3_input (class in sagemaker.session)


      	sagemaker.session (module)


      	SAGEMAKER_ESTIMATOR_CLASS_NAME (sagemaker.tuner.HyperparameterTuner attribute)


      	SAGEMAKER_ESTIMATOR_MODULE (sagemaker.tuner.HyperparameterTuner attribute)


      	sagemaker_session (sagemaker.tuner.HyperparameterTuner attribute)


      	Session (class in sagemaker.session)


      	set_hyperparameters() (sagemaker.estimator.Estimator method)


      	ShuffleConfig (class in sagemaker.session)


  

  	
      	SKLearn (class in sagemaker.sklearn.estimator)


      	SKLearnModel (class in sagemaker.sklearn.model)


      	SKLearnPredictor (class in sagemaker.sklearn.model)


      	SparkMLModel (class in sagemaker.sparkml.model)


      	SparkMLPredictor (class in sagemaker.sparkml.model)


      	STARTING (sagemaker.session.LogState attribute)


      	stop_tuning_job() (sagemaker.session.Session method)

      
        	(sagemaker.tuner.HyperparameterTuner method)


      


  





T


  	
      	TAILING (sagemaker.session.LogState attribute)


      	TensorFlow (class in sagemaker.tensorflow.estimator)


      	TensorFlowModel (class in sagemaker.tensorflow.model)


      	TensorFlowPredictor (class in sagemaker.tensorflow.model)


      	train() (sagemaker.session.Session method)


      	train_image() (sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.Estimator method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.rl.estimator.RLEstimator method)


        	(sagemaker.tensorflow.estimator.TensorFlow method)


      


      	training_config() (in module sagemaker.workflow.airflow)


      	training_job_analytics (sagemaker.estimator.Estimator attribute)

      
        	(sagemaker.FactorizationMachines attribute)


        	(sagemaker.IPInsights attribute)


        	(sagemaker.KMeans attribute)


        	(sagemaker.KNN attribute)


        	(sagemaker.LDA attribute)


        	(sagemaker.LinearLearner attribute)


        	(sagemaker.NTM attribute)


        	(sagemaker.Object2Vec attribute)


        	(sagemaker.PCA attribute)


        	(sagemaker.RandomCutForest attribute)


        	(sagemaker.estimator.EstimatorBase attribute)


        	(sagemaker.estimator.Framework attribute)


      


  

  	
      	training_job_summaries() (sagemaker.analytics.HyperparameterTuningJobAnalytics method)


      	TrainingJobAnalytics (class in sagemaker.analytics)


      	transfer_learning_tuner() (sagemaker.tuner.HyperparameterTuner method)


      	transform() (sagemaker.session.Session method)

      
        	(sagemaker.transformer.Transformer method)


      


      	transform_config() (in module sagemaker.workflow.airflow)


      	transform_config_from_estimator() (in module sagemaker.workflow.airflow)


      	Transformer (class in sagemaker.transformer)


      	transformer() (sagemaker.estimator.Estimator method)

      
        	(sagemaker.FactorizationMachines method)


        	(sagemaker.IPInsights method)


        	(sagemaker.KMeans method)


        	(sagemaker.KNN method)


        	(sagemaker.LDA method)


        	(sagemaker.LinearLearner method)


        	(sagemaker.NTM method)


        	(sagemaker.Object2Vec method)


        	(sagemaker.PCA method)


        	(sagemaker.RandomCutForest method)


        	(sagemaker.estimator.EstimatorBase method)


        	(sagemaker.estimator.Framework method)


        	(sagemaker.model.Model method)


      


      	tune() (sagemaker.session.Session method)


      	tuning_config() (in module sagemaker.workflow.airflow)


      	TUNING_JOB_NAME_MAX_LENGTH (sagemaker.tuner.HyperparameterTuner attribute)


      	tuning_ranges (sagemaker.analytics.HyperparameterTuningJobAnalytics attribute)


  





U


  	
      	unbias_data (sagemaker.LinearLearner attribute)


  

  	
      	unbias_label (sagemaker.LinearLearner attribute)


      	upload_data() (sagemaker.session.Session method)


  





W


  	
      	wait() (sagemaker.transformer.Transformer method)

      
        	(sagemaker.tuner.HyperparameterTuner method)


      


      	wait_for_compilation_job() (sagemaker.session.Session method)


      	wait_for_endpoint() (sagemaker.session.Session method)


  

  	
      	wait_for_job() (sagemaker.session.Session method)


      	wait_for_model_package() (sagemaker.session.Session method)


      	wait_for_transform_job() (sagemaker.session.Session method)


      	wait_for_tuning_job() (sagemaker.session.Session method)


      	WAIT_IN_PROGRESS (sagemaker.session.LogState attribute)


  







          

      

      

    

  _static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Amazon SageMaker Python SDK
        


        		
          Estimators
        


        		
          HyperparameterTuner
        


        		
          Model
        


        		
          PipelineModel
        


        		
          Predictors
        


        		
          Transformer
        


        		
          Session
        


        		
          Analytics
        


        		
          MXNet
          
            		
              MXNet Estimator
            


            		
              MXNet Model
            


            		
              MXNet Predictor
            


          


        


        		
          TensorFlow
          
            		
              TensorFlow Estimator
            


            		
              TensorFlow Model
            


            		
              TensorFlow Predictor
            


            		
              TensorFlow Serving Model
            


            		
              TensorFlow Serving Predictor
            


          


        


        		
          Scikit Learn
          
            		
              Scikit Learn Estimator
            


            		
              Scikit Learn Model
            


            		
              Scikit Learn Predictor
            


          


        


        		
          PyTorch
          
            		
              PyTorch Estimator
            


            		
              PyTorch Model
            


            		
              PyTorch Predictor
            


          


        


        		
          Chainer
          
            		
              Chainer Estimator
            


            		
              Chainer Model
            


            		
              Chainer Predictor
            


          


        


        		
          RLEstimator
          
            		
              RLEstimator Estimator
            


          


        


        		
          SparkML Serving
          
            		
              SparkML Model
            


            		
              SparkML Predictor
            


          


        


        		
          Amazon Estimators
        


        		
          FactorizationMachines
        


        		
          IP Insights
        


        		
          K-means
        


        		
          K-Nearest Neighbors
        


        		
          LDA
        


        		
          LinearLearner
        


        		
          NTM
        


        		
          Object2Vec
        


        		
          PCA
        


        		
          Random Cut Forest
        


        		
          Airflow
          
            		
              training_config
            


            		
              tuning_config
            


            		
              model_config
            


            		
              model_config_from_estimator
            


            		
              transform_config
            


            		
              transform_config_from_estimator
            


            		
              deploy_config
            


            		
              deploy_config_from_estimator
            


          


        


      


    
  

_static/plus.png





_static/up.png





