Parameters¶
Placeholder docstring
- class sagemaker.parameter.ParameterRange(min_value, max_value, scaling_type='Auto')¶
Bases:
object
Base class for representing parameter ranges.
This is used to define what hyperparameters to tune for an Amazon SageMaker hyperparameter tuning job and to verify hyperparameters for Marketplace Algorithms.
Initialize a parameter range.
- Parameters
min_value (float or int or PipelineVariable) – The minimum value for the range.
max_value (float or int or PipelineVariable) – The maximum value for the range.
scaling_type (str or PipelineVariable) – The scale used for searching the range during tuning (default: ‘Auto’). Valid values: ‘Auto’, ‘Linear’, ‘Logarithmic’ and ‘ReverseLogarithmic’.
- is_valid(value)¶
Determine if a value is valid within this ParameterRange.
- classmethod cast_to_type(value)¶
Placeholder docstring
- as_tuning_range(name)¶
Represent the parameter range as a dictionary.
It is suitable for a request to create an Amazon SageMaker hyperparameter tuning job.
- class sagemaker.parameter.ContinuousParameter(min_value, max_value, scaling_type='Auto')¶
Bases:
ParameterRange
A class for representing hyperparameters that have a continuous range of possible values.
- Parameters
min_value (float) – The minimum value for the range.
max_value (float) – The maximum value for the range.
scaling_type (Union[str, PipelineVariable]) –
Initialize a parameter range.
- Parameters
min_value (float or int or PipelineVariable) – The minimum value for the range.
max_value (float or int or PipelineVariable) – The maximum value for the range.
scaling_type (str or PipelineVariable) – The scale used for searching the range during tuning (default: ‘Auto’). Valid values: ‘Auto’, ‘Linear’, ‘Logarithmic’ and ‘ReverseLogarithmic’.
- classmethod cast_to_type(value)¶
Placeholder docstring
- class sagemaker.parameter.CategoricalParameter(values)¶
Bases:
ParameterRange
A class for representing hyperparameters that have a discrete list of possible values.
Initialize a
CategoricalParameter
.- Parameters
values (list or object) – The possible values for the hyperparameter. This input will be converted into a list of strings.
- as_tuning_range(name)¶
Represent the parameter range as a dictionary.
It is suitable for a request to create an Amazon SageMaker hyperparameter tuning job.
- as_json_range(name)¶
Represent the parameter range as a dictionary.
Dictionary is suitable for a request to create an Amazon SageMaker hyperparameter tuning job using one of the deep learning frameworks.
The deep learning framework images require that hyperparameters be serialized as JSON.
- is_valid(value)¶
Placeholder docstring
- classmethod cast_to_type(value)¶
Placeholder docstring
- class sagemaker.parameter.IntegerParameter(min_value, max_value, scaling_type='Auto')¶
Bases:
ParameterRange
A class for representing hyperparameters that have an integer range of possible values.
- Parameters
min_value (int) – The minimum value for the range.
max_value (int) – The maximum value for the range.
scaling_type (Union[str, PipelineVariable]) –
Initialize a parameter range.
- Parameters
min_value (float or int or PipelineVariable) – The minimum value for the range.
max_value (float or int or PipelineVariable) – The maximum value for the range.
scaling_type (str or PipelineVariable) – The scale used for searching the range during tuning (default: ‘Auto’). Valid values: ‘Auto’, ‘Linear’, ‘Logarithmic’ and ‘ReverseLogarithmic’.
- classmethod cast_to_type(value)¶
Placeholder docstring