Parameters¶
Placeholder docstring
-
class
sagemaker.parameter.
ParameterRange
(min_value, max_value, scaling_type='Auto')¶ Bases:
object
Base class for representing parameter ranges. This is used to define what hyperparameters to tune for an Amazon SageMaker hyperparameter tuning job and to verify hyperparameters for Marketplace Algorithms.
Initialize a parameter range.
Parameters: -
is_valid
(value)¶ Determine if a value is valid within this ParameterRange.
Parameters: value (float or int) – The value to be verified. Returns: True if valid, False otherwise. Return type: bool
-
classmethod
cast_to_type
(value)¶ Parameters: value –
-
as_tuning_range
(name)¶ Represent the parameter range as a dicionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job.
Parameters: name (str) – The name of the hyperparameter. Returns: A dictionary that contains the name and values of the hyperparameter. Return type: dict[str, str]
-
-
class
sagemaker.parameter.
ContinuousParameter
(min_value, max_value, scaling_type='Auto')¶ Bases:
sagemaker.parameter.ParameterRange
A class for representing hyperparameters that have a continuous range of possible values.
Parameters: Initialize a parameter range.
Parameters: -
classmethod
cast_to_type
(value)¶ Parameters: value –
-
classmethod
-
class
sagemaker.parameter.
CategoricalParameter
(values)¶ Bases:
sagemaker.parameter.ParameterRange
A class for representing hyperparameters that have a discrete list of possible values.
Initialize a
CategoricalParameter
.Parameters: values (list or object) – The possible values for the hyperparameter. This input will be converted into a list of strings. -
as_tuning_range
(name)¶ Represent the parameter range as a dicionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job.
Parameters: name (str) – The name of the hyperparameter. Returns: A dictionary that contains the name and values of the hyperparameter. Return type: dict[str, list[str]]
-
as_json_range
(name)¶ Represent the parameter range as a dictionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job using one of the deep learning frameworks.
The deep learning framework images require that hyperparameters be serialized as JSON.
Parameters: name (str) – The name of the hyperparameter. Returns: A dictionary that contains the name and values of the hyperparameter, where the values are serialized as JSON. Return type: dict[str, list[str]]
-
is_valid
(value)¶ Parameters: value –
-
classmethod
cast_to_type
(value)¶ Parameters: value –
-
-
class
sagemaker.parameter.
IntegerParameter
(min_value, max_value, scaling_type='Auto')¶ Bases:
sagemaker.parameter.ParameterRange
A class for representing hyperparameters that have an integer range of possible values. :param min_value: The minimum value for the range. :type min_value: int :param max_value: The maximum value for the range. :type max_value: int
Initialize a parameter range.
Parameters: -
classmethod
cast_to_type
(value)¶ Parameters: value –
-
classmethod